Hot electron and ion spectra on the blow-off plasma free target in the GXII-LFEX direct fast ignition experiment

Tetsuo Ozaki¹, Yuuki ABE², Yasunobu ARIKAWA², Shinichirou OKIHARA³, Eisuke MIURA⁴, Atsushi SUNAHARA⁵, Katsuhiro ISHII³, Ryohei HANAYAMA³, Osamu KOMEDA⁶, Yasuhiko SENTOKU², Akifumi IWAMOTO¹, Hitoshi SAKAGAMI¹, Tomoyuki JHOZAKI⁷, Junji KAWANAKA², Shigeki TOKITA², Noriaki MIYANAGA², Takahisa JITSUNO², Yoshiki NAKATA², Koji TSUBAKIMOTO², Yoshitaka MORI³ and Yoneyoshi KITAGAWA³ ¹National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan, ²Institute of Laser Engineering, Osaka Univ., 2-6 Yamada-Oka, Suita, 565-0871 Japan, ³The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu, Hamamatsu 431-1202, Japan, ⁴National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8560, Japan, ⁵Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States, ⁶Toyota Motor Corporation, 1 Toyota, Toyota, 471-8571, Japan, ⁷Hiroshima Univ., 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

ABSTRACT

- •Polystyrene deuteride shell targets with two holes were imploded by Gekko XII laser and additionally heated by LFEX in a direct fast ignition experiment.
- Lower effective electron temperature (T_{eff}) can be realized by reducing the inflow of the implosion plasma on the LFEX path, and high coupling efficiency can be expected.
- •The deposited energies of electrons to the core were evaluated to be from electron-ion spectra and a neutron yield.
- •The ions have a large contribution against target heating in direct fast ignition.

BACKGROUND

- •Fast ignition is performed by additional heating the imploded core.
- •Heating mechanisms consists of the electron/ion drag, the Joule and diffusive
- •The electron/ion drag heating is the most essential heating.
- $\bullet Low \ T_{eff}$ is important in order to obtain the high coupling efficiency.
- •Minimizing the pre-formed plasmas is a key to achieve low T_{eff}.
- Pre-formed plasmas are produced by pre-pulse and by blow-off.
- Direct heating is disturbed by blow-off plasma.
- Cone attached target to reduce blow-off plasma is a recent mainstream, but it is complicated.
- •To reduce blow-off plasma, we use a shell target with holes.

EXPERIMENTAL SETUP

Pulse waveform of GXII and T_{eff} from ESM, LFEX injection timing and X-ray history from

•Three shots have been performed at two

•Peak of X-ray wave form is assumed to be the maximum compression timing (T_{mc}). •In transverse irradiation, T_{eff} keeps low.

•GXII is Gaussian shape of pulse duration.

different injection timings.

- Imploding laser: Gekko XII (GXII) 1.545-1.738 kJ 1.3ns. •Heating laser: LFEX 243-343J, 1.3ps, 50 μmφ, 10¹⁹ W/cm².
- •Target :(C₈D₈)_n-shell 500 μmφ,7 μm^t, two holes of 100 μmφ.
- •Transverse irradiation 6 beams (B04,07,09,10,11,12).
- -->The blow-off plasma is small on the LFEX axis.
- (ref.(Axial irradiation, B01,02,08,03,05,06))
- Diagnostics; Three ESMs(electron, ion) at 0, 21 and 70 degrees from LFEX. Mandala(neutron), CR-39(pR), XPHC(size).

STAR2D[1].

LASER INJECTION TIMING

ELECTRON HEATING

Comparison of T_{eff} between in transverse and in axial irradiations

- •Electron energy spectra at 0 degrees are compared between in transverse and axial irradiations
- •T_{eff} in transverse irradiation is lower than that in axial irradiation,
- •Because there is small ablation plasma due to holes.
- •And the pre-pulse of LFEX has passed during implosion through holes. •Therefore, T_{eff} keeps low in transverse irradiation.

- •The electron number is calculated by $N_{elec} = E_L \times 75\% \div T_{eff}$ •25% of laser energy E_L has reflected from the results of other experiment.
- •The Laser plasma interaction position and the solid angle $\boldsymbol{\Omega}$ are estimated by
- simulation
- •The $dN_{elec}/d\Omega$ is determined from the momentum preservation.
- •The deposited energies of electrons to the target above the electron stopping range are almost same (each electron 0.0077 MeV at pR =0.012 g/cm^2).
- Finally, total electron drags are 5.5 J (-200 ps) and 2.8 J (+300 ps)

ION HEATING

- Ponderomotive acceleration of ions acts the core heating.
- \bullet Ion number N_{Dbeam} can be calculated from on spectrum (ESM) and neutron
- yield N_y(Mandla), as N_{Dbeam} = N_y/{ $\sigma_{DD} \times N_{Dtarget} \times I_{Range}$ } (2) where σ_{DD} , N_{Dtarget} and I_{Range} are DD reaction cross section (at T_{ion}) ion energy.
- D number in target and stopping range. •Here, $N_{Dtarget} \propto I_{Range} \times \rho$, I_{Range} at T_{ion} from SRIM code, density ρ :(CR-39 knock-on + XPHC)
- •Therefore, deposited ion energies can be evaluated to be 8.4 J (-200 ps) and
- 0.7 J (+ 300 ps).

SUMMARY

Electron heating										
Irradia.	Shot	Delay (ps)	E _{lfex} (J)	T _{eff_avg} (MeV)	ω/4π	_{Ер} (MeV)	N _{elec} (10 ¹⁵)	E _{e-drag} (J)	ρR (g/cm²)	
Trans.	190125T2	-200	343	1.05	0.217	0.079	1.53	5.5	0.012	
Trans.	190125T5	+300	309	1.06	0.022	0.079	1.37	2.8	0.012	
Axial	190124T3	+200	262	2.06	0.413	0.096	0.60	2.3	0.016	

lon (+electron) heating											
Irradia.	ρ (g/cm³)	Range (µm)	N _{DTarget} (10 ¹⁴)	T _{ion} (MeV)	σ _{DD} (b)	N _y (10 ⁸)	N _{Dbeam} (10 ¹³)	E _{i-drag} (J)	E _{drag} (J)	ΔE _{int} (J)	
Trans.	1.67?	3.75	6.44	0.46	0.100	2.47	9.17	8.4	13.9	?	
Trans.	1.90	2.30	4.47	0.33	0.076	0.268	0.99	0.7	3.5	?	
Axial	2.86	2.14	25.4	0.44	0.107	0.397	1.41	1.2	3.5	3.4	

CONCLUSION

•Laser plasma interaction region should be closed to the imploded core.

 $\bullet Lower \ T_{eff}$ can be achieved by reducing pre-formed plasma on LFEX path by using a target with holes.

- •The contribution of ion heating is plenty large in the direct ignition.
- •The coupling efficiency of 2.5 times can be expected by preventing blow-off completely, for example, by using holes with a fin.

ACKNOWLEDGEMENTS / REFERENCES

work is supported by NIFS14KUGK120, KUGK129, NIFS-URSX302, This URSX305, IIHH001 and The Graduate School for the Creation of New Photonics Industries.

[1] A. Sunahara, et al., J. of Phys.717(1) 012055.