First attempt to quantify the W7-X island divertor plasma by local experiment-model comparison Y. Feng, Y. Gao, K. Hammond*, L. Rudischhauser, T. Kremeyer, G. Fuchert, S. Bozhenkov, M. Endler, M. Jakubowski, R. Koenig, E. Pasch, and the W7-X Team Max-Planck-Institute for Plasma Physics, D-Greifswald, Germany *Princeton Plasma Physics Laboratory, NJ, USA

ABSTRACT

EMC3-Eirene simulations are compared with different local diagnostics on W7-X, as a complement to our recent work on *"understanding detachment of the W7-X island divertor"* [Y. Feng et al, submitted to Nucl. Fusion, 2021]. The main goals are to

- estimate cross-field transport coefficients
- identify the application limitations of the current EMC3-Eirene model
- verify the consistency of different diagnostics
- isolate geometric and physical effects that need to be prioritized in further developing the EMC3-Eirene code and improving diagnostic coverage

Experiment - #20180814.25

• Agree within the uncertainties in modeling and measurement

EMC3 vs H_{α} -camera (during detachment)

• Agree in form, peak location and dynamics, but not in absolute numbers

EMC3 vs Thomson scattering outside the divertor region

Setup of three simulation series

Two configurations

	series	Config.	P _{SOL} MW	D m²/s	χ _e =χ _i m²/s
	S1	SDC	5	0.5	1.5
	S2	SDC	5	0.5	0.75
	S3	M-SDC	5	0.5	0.75

two sets of heat conductivities

- Error fields + beta-effects
- All cross-field transport coefficients are spatially constant.

Comparison results

EMC3 vs IR-cameras along the target probe array

• *Reasonable match within modeling and measurement uncertainties*

• Mismatch of ne on the inboard side, to be validated.

- The diverse IR-profiles indicate error field and drift effects, which are not accessible to the 3D code.
- *"offset" of IR-profiles presumably by radiation not taken into account in the modeling*

ACKNOWLEDGEMENTS

• This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053.

CONCLUSION

First comparison results between EMC3-Eirene and various local diagnostics have shown reasonable agreement in many aspects, but there are exceptions:

- At detachment the IR-cameras show diverse heat flux profiles, indicating error-field and drift effects inaccessible to the 3D code.
- There are significant differences in absolute H_{α} -emission flux between the H_{α} -cameras and the EMC3-Eirene code, or more precisely, between the photon flux captured by the H_{α} -cameras and that expected from the target probes.
- At detachment, qualitative discrepancies in n_e on the inboard side are found between EMC3-Eirene and TS, which need to be clarified with improved diagnostic capabilities.