EMC3-Eirene simulations are compared with different local diagnostics on W7-X, as a complement to our recent work on “understanding detachment of the W7-X island divertor” [Y. Feng et al., submitted to Nucl. Fusion, 2021]. The main goals are to:

- estimate cross-field transport coefficients
- identify the application limitations of the current EMC3-Eirene model
- verify the consistency of different diagnostics
- isolate geometric and physical effects that need to be prioritized in further developing the EMC3-Eirene code and improving diagnostic coverage.

Experiment - #20180814.25

Time windows selected for comparison

Setup of three simulation series

<table>
<thead>
<tr>
<th>Two configurations</th>
<th>Two sets of heat conductivities</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDC</td>
<td></td>
</tr>
<tr>
<td>M-SDC</td>
<td></td>
</tr>
</tbody>
</table>

Comparison results

EMC3 vs IR-cameras along the target probe array

- Most of the comparisons are made along the target probe array.
- Error fields + beta-effects
- All cross-field transport coefficients are spatially constant.

EMC vs target Langmuir probes

- Agree within the uncertainties in modeling and measurement

EMC3 vs Thomson scattering outside the divertor region

- Agree in form, peak location and dynamics; but not in absolute numbers
- Reasonable match within modeling and measurement uncertainties

EMC3 vs Hα-camera (during detachment)

CONCLUSION

First comparison results between EMC3-Eirene and various local diagnostics have shown reasonable agreement in many aspects, but there are exceptions:

- At detachment the IR-cameras show diverse heat flux profiles, indicating error-field and drift effects inaccessible to the 3D code.
- There are significant differences in absolute Hα-emission flux between the Hα-cameras and the EMC3-Eirene code, or more precisely, between the photon flux captured by the Hα-cameras and that expected from the target probes.
- At detachment, qualitative discrepancies in n_e on the inboard side are found between EMC3-Eirene and TS, which need to be clarified with improved diagnostic capabilities.

ACKNOWLEDGEMENTS

- This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053.