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The upgrade of EAST tungsten lower divertor is almost finished. This work presents the physical design of the EAST lower divertor to find out the optimized geometry to

achieve further high performance long-pulse discharge by using 2D edge plasma code SOLPS and Monte Carlo impurity transport code DIVIMP. The optimized divertor

geometry is proposed after systematic examination of target shapes, target slant angles and the pump opening locations. The performance of the designed divertor is further

assessed by impurity seeding.

Abstract

1. The background and motivation

 The control of the power load on targets becomes to a critical issue during high

performance long-pulse discharges.

 EAST is planned to upgrade its lower divertor by the usage of W as the PFM.

 The divertor geometry has great impact on the edge plasma.

 The W target erosion and W impurity transport are very crucial for divertor.

 Drifts change divertor in-out asymmetry.

2. Simulation model

 SOLPS modeling is applied to the

divertor plasma modeling.

 The transport of W impurity is

simulated by DIVIMP code.
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3. Simulation results

3.1 Design of the geometry of EAST lower divertor

Effects of target shapes on the divertor plasma

Effects of target slant angle on 

the divertor plasma

Effects of pump opening location on 

the divertor plasma
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3.2 Tungsten divertor with Argon seeding

3.3 The comparison of Argon and Neon seeding

3.4 The divertor in-out asymmetry

4. Summary and conclusions
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Zeff at the CEI of OMP and plasma

quantities along outer target

Plasma quantities affects by E×B drifts

Tungsten sputtering and density 

distributions of Ar/Ne puffing

a) The horizontal target with OSP close to corner can promote achievement of the

fully detachment, the pump opening placing on PFR keeps enough particle

exhaust. The target slant angle has slightly influence on divertor plasma.

b) Edge plasma quantities can be significantly reduced by Ar seeding.

c) Comparing with Ne, Ar impurity has higher power radiation efficiency and

better divertor impurity screening, but stronger core radiation.

d) Ar seeding causes more serious tungsten target erosion and core plasma

contamination problem than that of Ne seeding.

e) The in-out divertor asymmetry can be offset a certain extent by the ion flow

driven by the drifts for the new designed EAST lower divertor.
Plasma quantities with power and Argon puffing rate scan

Density distributions/Zeff/power radiation of Ar/Ne 

Plasma quantities/Zeff with Ar/Ne puffing
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