28th IAEA Fusion Energy Conference (FEC 2020), 10–15 May 2021 TH/P4-4

Development of Simulation Codes to Treat Hydrogen Molecule Processes in Divertor Plasma Region including Divertor Plate

H. Nakamura^{1,2}, S. Saito³, K. Sawada⁴, K. Haga⁴, G. Kawamura^{1,5}, H. Ishihara⁶, K. Arseniy⁶, M. Kobayashi^{1,5} and M. Hasuo⁶ ¹NIFS, ²Nagoya Univ., ³Yamagata Univ., ⁴Shinshu Univ., ⁵SOKENDAI, ⁶Kyoto Univ.

Combining the neutral-transport (NT) code including the rovibrationally resolved collisional-radiative (CR) model with the molecular dynamics (MD) simulation, we clarify the influence of the divertor plate accurately on the spatial distribution of hydrogen atoms and molecules (H, H_2) in the divertor plasma region.

We calculated the desorption rate of H and H_2 from the tungsten crystal by the MD codes.

Number of emitted hydrogen atoms and molecules in 1500 trials in three cases of tungsten targets (T_A , T_B , and T_C). The number of hydrogen atoms in each tungsten target is 2272, 4368, and 6320 for T_A , T_B , or T_C , respectively. The number of tungsten atoms is set to 4608 for all tungsten targets.