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ABSTRACT

ITER PREDICTIONS: BERYLLIUM FIRST WALL EROSION

* ERO2.0 is a simulation code for Plasma-Surface-Interaction and Impurity Transport * ITER Be first-wall erosion predictions performed for all panels 1-18 (Fig. 3):
modelling. ° Case #1: reference burning plasma scenario (Q=10)

* The code was successfully validated using JET ITER-like Wall experiments. ° Case #2: increased flow velocity (M=0.5 at inner midplane)

* Predictions for the beryllium (Be) first wall erosion and transport were performed © Case #3: high Te, low ne in the far-SOL (non-convective assumption)
for ITER. °Case #4: minimum dr_sep —> higher triangularity

* The parameter study: variation of plasma species, SOL density, temperature and © Case #5: same, but with non-convective assumption
flow velocity, magnetic configuration, heating power. © Case #6: low-power hydrogen L-mode scenario

°Case #7: same, but with non-convective assumption
MOTIVATION g "

: same, but helium plasma
* Steady-state erosion of plasma-facing components (PFCs) reduces wall lifetime and FW panel numbers:

produces impurities.
°Impurities may lead to enhanced retention, radiative collapse, core plasma
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dilution, dust formation.

* Simulation tools for erosion and impurity transport are required - ERO2.0 (Fig. 1)

IS @ massively-parallel, 3D Monte-Carlo code desighed for such tasks.
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FIG. 1. Illustration of the general workflow of the EROZ2.0 code, based on the example of a
beryllium surface exposed to a deuterium plasma.

VALIDATION OF ERO2.0 AT JET ITER-LIKE WALL

* JET ITER-like Wall (ILW): same Be/W environment as in ITER - ideal test bed for PSI
and impurity transport codes.
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®* First ERO2.0 application: JET limiter plasma (contact point on inner limiter) leading case 73 ; i
to strong Be erosion. 0 5 10 0 5 0 5 10
Be flux [m2s71] x10?! Be flux [m~?s7!] x 10" Be flux [m—2s71] x10!8 Be flux [m2s™!] x101®

° Good agreement between synthetic and experimental spectroscopic images from . | . . | o
FIG. 3. Be gross erosion flux in the eight ITER simulation cases. For better visibility, each color

wide-view cameras (Fig. 2a), including shadowing patterns. map is cropped at the 99th percentile of main chamber flux.

°Parameter study: fuelling scan (leading to local Te variation between ~5-35 eV)

“ ” : : TABLE. 1. he ITER simulati Its.
showed that the so-called “ERO-max” assumption (clean Be surface) gives good summary of the simulation cases and results

~ . : : . e . case no. #1 #2 #3 #4 #5 #6 #H #8
results at ~35 eV, while “ERO-min” assumption (50% D inside Be surface) gives case case case ease case ease case case
. Fuel D D D D D H H He
good results at ~5-10 eV (= less D outgassing).
PSOL [MW] 100 100 100 100 100 20 20 20
* Extension to diverted plasmas: at different NBlI power (Fig. 2b), reasonable Confinement H-mode  H-mode H-mode H-mode H-mode L-mode L-mode  L-mode
agreement achieved with “ERO-min” due to the lower temperatures (~5 eV). Imposed SOL flow None M=0.5 None None None None None None
Far-SOL density High High Low High Low High Low Low
N s 10 5 ' 4 . . : ne at OMP FW [m~3] 1.8x10*¥ 1.8x10® 15x10% 43x107 59x10% 44x10" 15x10*" 1.5x10%
O : B cxperiment E
o P . T MP FW [eV 1 1 2 1 2 1 1
AL _ > . ‘ A ERO2.0: 0% DJ. eato [eV] 0 0 0 : _O _ _O > 0 0
0.8 = yily ?jc. 1} » ERO2.0: 50% D | Alsep Broad Broad Broad Minimum  Minimum Broad Broad Broad
TSsLY i Be FW gross erosion [Be/s] 1.5x10%® 1.1 x10® 4.8x10%2? 3.3x10%® 16x10* 19x10%2? 13x10%* 1.1x10%
p— O
= Lo B Be deposition on FW [%)] 90.0 78.5 74.2 95.0 99.6 66.5 43.7 56.2
0.6 HimeRs =
E s 2, 0.1} 4 Be deposition in divertor [%] 0.8 21.3 25.4 4.3 0.1 31.7 53.2 41.4
= i Q | : Be deposition in gaps [%] 0.2 0.2 0.5 0.6 0.3 1.9 3.0 2.5
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i U _ _ limiter ~ohmic L-mode H-mode The ERO2.0 code is a valuable tool for 3D simulations of global erosion
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FIG. 2. Experimental validation of ERO2.0 at JET ILW. a) Experimental and synthetic wide-
angle camera images of Be II 467 nm emission (limiter configuration). b) Simulated effective Be
sputtering yields at the inner midplane and experimental ones determined via the S/XB method, by lower triangularity
in different discharge phases (limiter, ohmic, L-mode, H-mode).

*ITER simulations show high Be erosion at the apex - can be improved
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