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Numerical simulations by the integrated divertor code SONIC show that the screening effect on the Additional Ne seeding into Ar-seeded plasma results in low Ar density
seeded high-Z impurity in the SOL plasma is improved through the enhancement of plasma flow

induced by additional low-Z impurity injection. A single impurity injection of Ar into a steady-state at SOL top ->low Ar density in core . o
high-beta plasma of JT-60SA results in a high Ar density at the top of SOL plasma, leading to an ~ Schematic view of Ar density and net force Ar density/D+ flow/ net force distributions

increase of core Ar density. This issue can be solved with even a small Ne seeding, which reduces Ar density peaking plotted along flux tube 0.8 mm outside
Ar density in the SOL and the core plasmas. This is mainly caused by the enhanced friction force ) Casc A: Ar-only seeding separatrix at OM
due to the higher D+ parallel flow towards the inner divertor, which is originated from the strong ® Case B: Ar + Ne seeding (Ne: 0.02 Pa m/s) — Case A: Ar-only
Ne radiation around X-point. We show that the line emission of Ne’* has a key role for the SOLtop (TOP): 60m |~ Case B: Ar+Ne (Ne: 0.02 Pa m’/s)

. , _ P S ---= Case C: Ar+Ne (w/o Ne” line radiation)
generation of higher D* parallel flow. Friction force .- .

+ Thermql force

\

1018ﬁAPdenSlw -

Divertor power handling by impurity seeding
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One of the issues towards ITER and DEMO is divertor power handling Quter midplane 10

/ (OM): 3.8 m 40 o]
Radiation cooling of impurity has important role s 50 - __ \:
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To establish control method of impurity transport ¢ ' / N Case B: low Ar density in SOL top by friction force enhanced by high D*
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High Ne radiation power in HFS side near X-point (mainly line radiation of Ne’*)
IMPMC "y : . : L . .
Impurity Additional calculation without line radiation of Ne’* is carried out (Case C)
e cedle - High D* flow cannot be seen: Ne’* has a key role for low Ar density in top of
A / SOL

- Importance of Ne’* line radiation is consistent with spectroscopic/bolometric
observation in JT-60U Ar+Ne seeding experiment [2,3].

Time- ndent analysi NIC is ongoing tor | mechanism of D* fl
Kinetic effects of impurity can be considered ime-dependent analysis by SO '> ONBOINg to Teveal mechanism o oW

(i.e. detailed Coulomb collision processes, plasma-wall interactions, etc.) acceleration by Ne seeding

SONIC is applied to JT-60A steady state high-beta plasma

with Ar-only and Ar+Ne mixed impurity seeding simulations Numerical simulations of SONIC shows that Impurity transport

Calculation conditions control in SOL could be possible by mixed-impurity seeding

Ar-only seeding: high Ar density in SOL top (due to thermal force)
Ar+Ne seeding: low Ar density in SOL top (due to friction force)

Self-consistently computes transport processes of plasma, neutral and impurity
SONIC computes impurity transport kinetically by IMPMC code

Input parameters

P..=23 MW Computational grid for JT-60SA o . , , _

) o ) Plasma/ Neutral/ mpurty - Friction force is enhanced by high D+ parallel flow towards inner divertor
fion = 2.8 X107 s (from NBI), | Neutral /impurtty region by Ne radiation (Key: Ne’* line radiation)
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