Linear Analysis of Cross-field Dynamics with Feedback Instability on Detached Divertor Plasmas

Hiroki HASEGAWA^{1,2}, Hirohiko TANAKA³ and Seiji ISHIGURO^{1,2}

The theoretical model of the feedback instability in the coupling system between the magnetized plasmas characterized by different current mechanisms (see **Fig. 1**) is proposed to explain the correlation between the detachment and the cross-field transport:

- (1) The unstable mode has been found from the dispersion relation under a certain condition for both the typical fusion torus case (see **Fig. 2**) and the NAGDIS-II linear device case.
- (2) The feedback instability can provide the cross-field plasma transport in the boundary layer of magnetic fusion torus devices (see **Fig. 3**).
- (3) The transport property estimated by the proposed model is in good agreement with that of the spiralling plasma ejection observed in the NAGDIS-II experiment (see **Fig. 4**).

Figs. 2 (left) & 3 (right): Dependences of the growth rate γ and the group velocity $\partial \omega / \partial k$ of the unstable mode on the wave number k and the propagation direction θ for the typical fusion torus case. Here, c_s^P is the ion acoustic speed in the upstream plasma.

Fig. 1: Schematic diagram of the detached divertor plasma from the viewpoint of the coupling model.

Fig. 4: Comparison between the spiralling plasma ejection observed in the NAGDIS-II experiment and the feedback instability model.

The plasma can be transported with the speed $\sim 0.002 c_s^P$.

¹National Institute for Fusion Science (NIFS), National Institutes of Natural Sciences (NINS), Toki, Japan

²Department of Fusion Science, The Graduate University for Advanced Studies, SOKENDAI, Toki, Japan ³Graduate School of Engineering, Nagoya University, Nagoya, Japan