Modeling snowflake divertors in MAST-U tokamak
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ABSTRACT RESULTS

* In a snowflake (SF) divertor, two magnetic field nulls are placed close to each other creating four strike

points (SPs) cf. two in a standard X-point divertor. EFFECT OF THE MAGNETIC FIELD GEOMETRY
e In preparation to MAST-U experiments, X-point and SF divertors with various locations and separation In this section, modeling results for X-point and SF divertors with no SF mixing (Dx=0) are presented to
distances of the nulls were modeled using a 2D multi-fluid code UEDGE with a full plasma transport model analyze solely the effect of magnetic field geometry on the divertor operation.

featuring charge-state-resolved sputtered carbon impurities.
e The complex interplay of the SF plasma transport (“churning” mode) and magnetic configurations was  Plasma heat to all divertor targets (SP1 — SP4) in X-point and SF divertors:
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Standard ey Snowflake  SF-plus: SF""US'\/  Each primary SP (SP1 and SP2) receives nearly same amount of heat in the X-point divertor, all SF-
divertor: divertors | v plus divertors and SF-minus divertor with small d,,. Secondary SPs receive a small fraction of power

(SF): * In SF-minus divertors with larger d,,, substantial fraction of the SOL power is directed towards SP4.

( Correspondingly, heat flux to SP2 is smaller.
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 Heat flux profiles are substantially broadened and

Potential advantages of snowflake configurations:
8 8 flattened out in the SFs due to higher magnetic flux

2e+06 -

q plasma, [W/m~2]
Peak g, [MW/m~™2]

P
1

. . . 1le+06 1
S(:.andard tllgh flux e”xpan5|on — large region of small B, 2 v i TS expansion.
1 1 ih e'+ : é_ _ é_ le+19 3e+19 .
\\ Wertor// churning” mode instability o Dictance fo 86, (m) ni_sep, [m~-3] Plasma temperature at primary SPs:
\\\ / | I
ncreased connection length = , : :
\: 5 T0] Vs , o & * Electron temperature at primary SPs is lower in SF = 100.
A higher radiative energy loss and lower peak heat fluxes divertors 813
/// &\ . . %
/ N\ to the divertor plates. L. s
/ N\, P * Avradiation front forms at SP1. It spreads towards the null £ 10
SP1 SP2 Plasma rotation in the two-null region ("churning mode") 2> region with the separatrix density increase. ¢
heat/particle fluxes are directed to all divertor legs. * |nthe SFs, radiation volume is broader S PP TR ST ———
t t . SP ni_sep, [m~-3] ni_sep, [m~-3]
: : i , erature at primary SPs: o .
e Snowflake divertor experiments are planed on the upgraded MAST-U tokamak: . o HW']'%"KH 0 — Total radiation: ..
. . . . 23 - i N ((iiEAREZ - 107 a
Spherical tokamak in Culham Center for Fusion Energy, Oxfordshire, UK: .. : * 135 tas: RIS b g o4
’ ’ 3 Gingred | code was o i TG [  In the SFs, total 205
- Research focus on | substantially enhanced to 2145, T S radiated energy s %5 04
+ divertor processes N e/ create high're50|uti0n 5% l'si %% S s h|gher % 0.1
y li\ 18 field_aligned SF e -.1.6- ncore=1020rn-3 Sl . g 1;3-;-19 | 39-;-19.
ot a 3 - Major radius R = 07 m 16 0.4 0.5 0.6 0.7 0.8 0.9 [W/m?] ni_sep, [m~-3]

computational grids

- Up to 5 MW NBI heating

EFFECT OF FAST PLASMA MIXING ON THE PERFORMANCE OF SF DIVERTORS

In this section, fast plasma mixing intensity (parameter D, in Eqg. (1)) is varied from O (no plasma mixing)
to 490 m?/s. SF-plus and SF-minus divertors with smallest and largest d,, are modelled.

- First wall material:
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Plasma heat to all divertor targets (SP1 — SP4) in SF divertors with and without mixing modeled:
SF-plus: SF-minus:

- Magnetic field modeled using |
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X-POINT AND SF CONFIGURATIONS IN MAST-U TOKAMAK "i_sep, [m~-3] ni_sep, [m~-3] ni_sep. [m"-3] ni_sep, [m~-3]
SF-plus and SF-minus configurations with various null separation were modelled: * Power load to primary SPs substantially reduces with the SF mixing in all SF divertors.

* Inall SF-plus divertors and in the SF-minus divertor with smallest d,,, the heat reduction at SP2 is

SF-plus SF-minus X-point partially driven by the power redistribution towards secondary SPs.
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primary X °"% X-point—> SP1 and SP2 in all Heat flux profile and peak value:
7 X-point configurations were SF-plus: SF-minus:  With the mixing
placed at close .- SP2 increase, heat flux
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locations. profiles at SP2

broaden and
flatten. Peak heat
flux at SP2 reduces.
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TRANSPORT MODEL IN UEDGE R A
Electron temperature, [eV] i .

- Multi-fluid model Fast plasma mixing in the two-null region of SF divertors was modelled l * Accordingly,
- Multi-component transport for by adding two Gaussian profiles*™ centered at the PF nulls to transport 135, total heat to

D, D%, C, C*, C%*, C3*, C#*, C>*, Cb* coefficients (D, and x,)**: the divertor
- Heat transfer for electrons and D mix = D1 + Dgqa, 13 “’f' targets

heavy particles 2 U = ” i reduces.

Dadd = Dx [exp (—( e 1) — ( = 1) ) + exp (—( - 2) — ( - 2) )] Gl ) 0.4 0.5 0.6 0.7 0.8 0.9 [ev] ©°¢ 0.5 0.6 0.7 0.8 0.9
Boundary conditions - .
Y D, Xx were varied in a range 0 to 490 m2/s r*=081a (B, a/R)1/3 ~ 10cm * |n general, the fast plasma mixing does not have a substantial effect on the plasma aetacnment at

- Symmetric conditions at the X1mix Was treated similarly primary SPs, but it strongly affects heat distribution between the divertor legs and heat flux profiles.

midplane (only bottom modeled)  ¢ross-field thermal conductivity (x,):
- NBI heating 2.5 MW (1.25 MW for <3y T

a bottom half of a tokamak). i _,m_,‘;,u/ 7 l CONCLUSIONS
- 98% ion recycling at the walls and 18 l///%‘” / ' 107 . . : . : : :
. | e In preparation to MAST-U experiments, numerical simulations of X-point and SF divertors were
divertor. i erformed using a 2D multi-fluid code UEDGE with charge-state-resolved carbon impurities
- 98% neutral albedo coefficient at £ iy P 5 5 P '
side walls. 13 | e For the first time, the complex interplay of the plasma transport and magnetic configurations with
- 100% albedo at divertor targets. 14 10° various relative locations and separations of the SF nulls was comprehensively studied.
- Davis-Haasz sputtering model for 1 . SN e In all SF configurations, the heat flux profile is broadened and flattened at primary SPs as a result of
C sputtering g5 Ws 05 B X7 o6 op 1045 Gs o5 0 g7 08 o G4 o5 o8 a7 o8 o8 Loy og higher magnetic flux expansion at the divertor targets. Accordingly, peak heat flux is reduced.
*D. Moulton et al, Proc. 44th EPS Conf. (Belfast, UK, 2017) **T.D. Rognlien, 56th APS-DPP Meeting (New Orleans, LA, 2014) e Primary SPs in the SF configurations approach the plasma detachment conditions (the 1 eV threshold)

earlier (at lower separatrix densities).
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