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ABSTRACT RESULTS

eFull-wave modeling without and with SOL turbulence has been developed

RESULTS WITH DIFFERENT DENSITY FLUCTUATION AMPLITUDES (ﬁ)
and applied to helicon current drive on DIII-D tokamak n

eResults are sensitive to turbulence parameters such as fluctuation n/n=02 n/n=04 n/n=06 n/n=08
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amplitude and wavelengths, and may cause large helicon wave SOL losses
eMode conversion to slow waves could be an important physical 25
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HELICON FULL-WAVE MODEL WITHOUT SOL TURBULENCE OBSERVATION OF MODE CONVERSION
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HELICON FULL-WAVE MODEL WITH SOLTURBULENCE helicon wave propagation and absorption can be strongly affected by SOL

+ Because helicon wave frequency >> turbulence frequency, turbulence is ~ tureulence properties such as density fluctuation amplitude and

“frozen” and is an input to density profile in full-wave simulations fluctuation wavelength

* Synthetic turbulence model is used here e Mode conversion to slow wave in the SOL is observed and may at least
N (p—p,)2 partially explain the large SOL electric fields observed
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