

IAEA-CN-284/1271 Investigation of Toroidal Rotation in Impurity Seeding ADITYA-U Tokamak Plasmas

M. B. Chowdhuri1^{*}, K. Shah², J. Ghosh¹, G. Shukla², R. L. Tanna¹, K. A. Jadeja¹, R. Manchanda¹, N. Yadava³, N. Ramaiya¹, S. Patel², K. M. Patel¹, Tanmay Macwan¹, U. C. Nagora¹, S. K. Pathak¹, J. V. Raval¹, M. K. Gupta¹, S. K. Jha¹, M. V. Gopalakrishna¹, K. Tahiliani¹, Rohit Kumar¹, Suman Aich¹, Suman Dolui¹, Kaushlender Singh¹, N. Bisai¹, V. Balakrishnan¹, C. N. Gupta¹, and ADITYA-U Team¹

> ¹Institute for Plasma Research, Bhat, Gandhinagar 382 428, India ²Pandit Deendayal Petroleum University, Raisan, Gandhinagar, 382 007, Gujarat, India ³Institute of Science, Nirma University Ahmedabad 382 481, India

> > E- mail : malay@ipr.res.in

- disruption prediction and mitigation studies along with
- the studies of the plasma position control and confinement improvement with shaped plasma.
- to study the plasma properties under various discharge cleaning and gases injection into the plasma

Major radius, R : 75 cm Minor radius, a : 25 cm **Toroidal belt limiter : Graphite** Toroidal field B_t : 0.75 – 1.4 T Plasma current I_p: 100 – 180 kA Plasma duration: 120 – 360 ms Electron density, n_e : 1 – 3.5×10¹⁹ m⁻³ Electron temperature, T_e : 300 – 750 eV

Diagnostics used in this experiment

- Line averaged n_e using 1 channel Heterodyne μ wave interferometer
- Diamangetic loop to measure plasma stored energy
- A VUV survey spectrometer used to monitor spectral lines of neon ions
- Plasma stored energy using diamagnetic loop
- **Radiation power from Bolometer diagnostics**
- AXUV detector array to record radial profile of soft X-ray emissions
- PMT based spectroscopy diagnostics to monitor H_{α} , spectral lines from CII and OII and also visible continuum emission

Toroidal rotation measurement diagnostics:

Neo-Alcator scaling, $\tau_E = 7 \times 10^{-2} n_e a R^2 q_a$

- 1. τ_{e} was improved from 6.5 to 9.0 ms
- 2. Transition to better plasma properties happens at 112 ms, after ~ 7 ms of neon puff application
- 3. The value 1.4 times the Neo-Alcator scaling for Ohmically heated tokamak plasma.
- Improved plasma seems to be similar to the IOC mode of tokamak operation

Toroidal plasma rotation study in impurity seeded plasma

- Visible spectrum around 529 nm observed from many LoS viewing the plasma tangentially
- Charge exchange line shows a maximum brightness around 4 cm radial location
- For rotation measurement Doppler shift of spectral line estimated
- Un-shifted wavelength calibration done using same line viewing plasma from opposite direction having red and blue shifts
- Able-like matrix inversion done to get the radial profile of rotation velocity from the chard integrated rotation velocity

- A high resolution multi-track spectrometer used to collect light from 6 LoSs to monitor passive charge exchange lines at 529 nm from C⁵⁺
- A 13.5 um pixel sized, 2048x512 pixels CCD is detector
- Plasma viewed from tangential port covering plasma center to edge
- System dispersion 0.0075 nm/pixel, one pixel shift \equiv 4.5 km/s

Neon gas puffing experiment In ADITYA-U tokamak

- Neon gas puffs were introduced mainly from the bottom port
- Both single as well as multiple puff was applied at different time intervals
- Multiple gas puffs was introduced in the vessel by using a Piezo-electric valve (500 SCCM at 100 V)
- A programmable pulse generator is used for multiple gas puff (for hydrogen and Neon both) to control the fuel gas
- Neon gas was puffed during the current flat-top region.
- Gas puff amplitude, pulse width and its number and time interval adjusted to study its effect on the ADITYA-U tokamak plasma

Result and discussions

to spectrometer

- Toroidal rotations are around 15 5 km/s before neon puff.
- Rotation reduces to ~ 5 km/d after neon puff
- Rotations during both times are counter-current direction in most part of the plasma
- Reversal of rotation happening towards the edge plasma region.
- Improved properties is likely related to this change in toroidal rotation

Summary

✓ Improved plasma properties almost similar to IOC mode of plasma obtained in ADITYA-U

tokamaks by introducing single or multiple neon gas puff.

minor_radius (cm)

Significant rise in line averaged n_e , edge n_e , W_p and radiation power observed

Energy confinement time increase after transition to improved mode, which happen after 7 ms of gas puffing

Study of toroidal rotation profile indicates change in rotation related to plasma iprovemnt

28th IAEA Fusion Energy Conference (FEC 2020, virtual), 10-15 May 2021, Nice, France