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Reaching good-quality H-mode and the development of ELM control techniques are among the main priorities
for ITER during its non-active operations [1’]. Recent encouraging experimental results at JET-ILW demon-
strated a significant reduction in the H-mode power threshold for NBI-heated plasmas when a small amount
of 4He ions, n(4He)/ne ≈ 10%, was added to hydrogen plasmas [2’]. This finding motivated the ITER team
to consider the use of H-4He plasmas to widen the H-mode operational space in predominantly hydrogen
plasmas [3]. Equally important, this mix also allows an application of the 3-ion ICRF scheme [4] with the off-
axis heating of 3He minority ions, n(3He)/ne < 1%, as proposed in [5], capable of additionally delivering
up to 20MW of heating power in H + 10% 4He plasmas in ITER.

In this contribution, we report the results of physics studies on the ASDEX Upgrade (AUG) tokamak, in
which the above mentioned ITER-relevant heating scheme was recently prototyped. The high efficiency of
the 3-ion scheme for plasma heating was proven by applying an ICRF power ramp to increase the plasma
stored energy and trigger L-H transitions in H-4He plasmas (2.5T/0.8MA), see Fig. 1. Different combinations
of the heating systems were successfully used to enter H-mode on AUG, including NBI+ECRH+ICRF (as in
ITER), ECRH+ICRF, and ICRF-only. Similar to the earlier observations in H-4He plasmas with hydrogen NBI
and ECRH heating on AUG [6], the L-H transitions were reached at PLH ≈ 2−3MW (ne0 ≈ 4×1019 m−3).
Another important result of our studies on AUG is the demonstration that the 3-ion ICRF scheme with off
axis 3He heating is compatible with avoiding tungsten accumulation. The 3-ion ICRF scheme with core 3He
heating was also applied on AUG, resulting in new and interesting fast-ion physics effects, including the first
observation of 3He-driven ion cyclotron emission on this tokamak.

Figure 1: AUG has prototyped the heating scenario in non-active H-4He plasmas with NBI, ECRF and
ICRF systems that has a potential to widen H-mode operational space in ITER [3]. An ICRF power ramp
using the 3-ion scheme 4He-(3He)-H was applied to trigger L-H transitions on AUG (2.5T/0.8MA).
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In JET-ILW, we further advanced the 3-ion ICRF technique for heating mixed plasmas using injected fast
NBI ions as a resonant ion component. Following the success of studies in H-D plasmas [7, 8], a controlled
acceleration of D-NBI ions to higher energies with ICRF was recently demonstrated in mixed D-3He plasmas.
Figure 2 (a) shows an overview of JET pulse #94701 (3.7T/2.5MA), in which 6MW of ICRF was applied in
combination with 8MW of NBI. The neutron rate was increased from 0.6× 1015 s−1 in the NBI-only phase
to 1.0×1016 s−1 in the combined ICRF+NBI phase of the pulse. For comparison, we also illustrate the plasma
performance for the NBI-only pulse #94704 (characterized by dominant ion heating in the plasma core), which
was performed at the same operational conditions as #94701. The stronger Te peaking and much higher Te0

and neutron rate in pulse #94701, as compared to #94704, are easily understood by the presence of high-energy
D ions due to efficient central deposition of ICRF power. However, the comparison of the measured plasma
stored energy, Te and Ti profiles at the same total auxiliary heating power (Paux. = 14MW) and plasma
density (ne0 ≈ 6 × 1019 m−3), as shown in Figs. 2 (b) and (c), hints at a significantly reduced transport in
pulse #94701, characterized by a large fraction of fast ions in the plasma core. The analysis of pulse #94701
using the gyrokinetic code GENE is ongoing, aiming to understand better the transport in JET plasmas under
the ITER-relevant conditions of dominant fast-ion electron heating in the plasma core and identify possible
fast-ion effects on microturbulence. The observation at JET that in such plasmas Ti ≈ Te is very promising
for ITER, and is in line with recent theoretical studies showing that alpha particles can significantly stabilize
ITG turbulence and reduce heat transport in ITER [9]. Furthermore, the developed 3-ion ICRF scheme in
mixed D-3He plasmas was used as a tool to generate alpha particles and validate successfully updated JET
diagnostics for alpha measurements prior to future D-T operations [10].

Figure 2: (a) Overview of JET pulse #94701, in which the 3-ion ICRF scheme D-(DNBI)-3He was applied
in mixed D-3He plasma (3.7T/2.5MA, ne0 ≈ 6 × 1019 m−3, n(3He)/ne ≈ 20 − 25%). The heating
conditions in the plasma core mimic the conditions of D-T plasmas in ITER, characterized by dominant
fast-ion electron heating. The dotted black lines show an overview of JET pulse #94704 with an NBI-
only heating (dominant ion heating in the core) at the same operational conditions as in pulse #94701.
(b) and (c) Comparison of Te and Ti profiles for pulses #94701 and #94704 at the same total auxiliary
heating power, Paux. = 14MW and plasma density, ne0 ≈ 6× 1019 m−3.

The discussion of recent experimental studies on AUG and JET is complemented by illustrating the synergy
between experimental and modeling developments in this field of plasma physics [8, 11]. An outlook of pos-
sible applications of the 3-ion schemes in JET and ITER is discussed, including promising schemes for the
demonstration of alpha particle effects in the upcoming D-T campaign on JET [12], in particular, electron
heating by alpha particles. While further more detailed analysis work remains to be done, e.g., better under-
standing the interaction of the fast ions with the plasma, MHD modes and turbulence, the results obtained
recently on JET and AUG confirm the high efficiency of the novel 3-ion ICRF schemes for plasma heating and
increase our confidence in extrapolating the application of these schemes to ITER.
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