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ABSTRACT

This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range
of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron
heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma com-
position to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identi-
fied. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H–D plasmas on the Alcator
C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant pro-
gress has been made on the ASDEX Upgrade and JET tokamaks in H–4He and H–D plasmas, guided by the ITER needs. Furthermore, the
scenario was also successfully applied in JET D–3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast
ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small
region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast
ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedi-
cated ICRF studies to a flexible tool with a broad range of different applications in fusion research.
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I. INTRODUCTION

Strong magnetic fields are used to confine plasmas in fusion devi-
ces. As a result of the Lorentz force, plasma ions and electrons gyrate
around the magnetic field lines with a local characteristic cyclotron fre-
quency xcs¼ qsB/ms, where qs and ms are the charge and the mass of
the particle and B is the local value of the magnetic field. Note that
ions rotate in the clockwise direction, while electrons rotate counter-
clockwise, when viewed in the direction opposite to the magnetic field.
For typical magnetic fields in present-day and future tokamaks, the
ion cyclotron frequencies broadly cover the range between �10MHz
and �100MHz. A system for plasma heating with waves in the ion
cyclotron range of frequencies (ICRF) is under development for ITER,
aiming to deliver 20MW of heating power in the frequency range
40–55MHz.1–4 In addition to plasma heating, ICRF systems have a
broad range of additional applications, as discussed in recent
overviews.5,6

ICRF heating relies on the excitation of fast magnetosonic waves
that can be absorbed by both ions and electrons via a large number of
collisionless absorption mechanisms in the plasma.7–10 A necessary
condition for fundamental ion cyclotron (n¼ 1) and harmonic damp-
ing (n¼ 2, 3, …) is the local match between the Doppler-shifted wave
frequency and the ion cyclotron frequency or harmonics

x ¼ nxci þ kjjvjj;i n ¼ 1; 2; 3; …ð Þ: (1)

Here, x¼ 2pf with f being the frequency of the launched radio fre-
quency (RF) waves; kjj and vjj,i are the wavenumber and ion velocity
parallel to the confining magnetic field; and n is the cyclotron har-
monic number. In turn, Eq. (1) determines the parallel velocities for
resonant ions

vjj;i ¼ x � nxcið Þ=kjj: (2)

For thermal ions with low vjj, this condition can be fulfilled close to
the ion cyclotron resonance layers, where x � nxci. Note that the
physics of ICRF heating is very rich and extends beyond ion cyclotron

interactions only. In particular, fast waves can also be absorbed directly
by electrons or undergo a transformation to shorter wavelength modes
via mode conversion.11,12

The RF electric field of the propagating fast waves can be written
as the sum of a left-hand, Eþ (rotating in the direction of the ions) and
a right-hand, E� (rotating in the direction of the electrons) polarized
component.13 Efficient ion cyclotron damping for thermal and moder-
ately energetic ions occurs when Eq. (1) is satisfied in a region with a
high jEþj.9 To a large extent, the plasma composition determines the
spatial distribution of the ratio Eþ/E� in the plasma volume and thus
is a crucial parameter to optimize the ICRF heating efficiency.

Out of all existing ICRF heating scenarios, minority heating is the
most routinely used in fusion research. In its simplest version, this
heating scenario is realized in two-ion species plasmas with different
charge-to-mass ratios, where the concentration of one of the ion spe-
cies (minority) is much lower than that of the other one. Minority ions
absorb RF power close to their cyclotron resonance, x � xci,mino

(n¼ 1). In its purest form, minority heating is obtained at a negligible
minority concentration that is low enough such that it does not affect
the wave propagation characteristics.7,8 In practice, minority heating is
applied at higher minority concentrations, Xmino¼ nmino/ne (here,
nmino is the minority density and ne is the electron density), typically
from a few % to �10%. This is not only due to a higher density of
resonant ions, but also because of the appearance of the so-called
ion–ion hybrid (IIH) layer.14 The Eþ component is locally enhanced
at this layer (see Sec. II), facilitating RF power absorption by minority
ions.

The radial position of the IIH layer in the plasma depends on the
plasma composition.12 As the concentration of minority ions
increases, the IIH layer shifts further away from the minority cyclotron
resonance toward the cyclotron resonance of the other ion species.
Eventually, the distance to the IIH layer gets too large for both plasma
ion species and they can no longer resonate at the region with an
enhanced jEþj. Under these conditions, ICRF heating via mode con-
version becomes dominant, where launched RF fast waves undergo a
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