

GROSS AND NET EROSION BALANCE OF PLASMA-FACING MATERIALS IN FULL-W TOKAMAKS

<u>A. Hakola¹, J. Likonen¹, A. Lahtinen², T. Vuoriheimo², M. Groth³, H. Kumpulainen³, M. Balden⁴, K. Krieger⁴, T. Schwarz-Selinger⁴,</u> S. Brezinsek⁵, M. Kelemen⁶, S. Markelj⁶, M. Barac⁷, S. Gouasmia⁷, I. Bogdanovic Radovic⁷, A. Uccello⁸, E. Vassallo⁸, D. Dellasega⁹, M. Passoni⁹, M. Sala⁹, E. Bernard¹⁰, M. Diez¹⁰, C. Guillemaut¹⁰, E. Tsitrone¹⁰, ASDEX Upgrade Team¹¹, EUROfusion MST1 Team¹², and EUROfusion WP PFC Contributors¹³

antti.hakola@vtt.fi

¹VTT, P.O.Box 1000, 02044 VTT, Finland ³Aalto University, Department of Applied Physics, Finland ⁵Forschungszentrum Jülich, Insitut für Energie und Klimaforschung – Plasmasphysik, Jülich, Germany ⁹Ruder Boskovic Institute, Zagreb, Croatia ⁹Politecnico di Milano, Department of Energy, Milan, Italy ¹¹See author list of H. Meyer *et al*. 2019 Nucl. Fusion **59** 112014 ¹³See author list of S. Brezinsek et al. 2017 Nucl. Fusion 57 116041

²University of Helsinki, Department of Physics, Finland ⁴Max-Planck-Institut für Plasmaphysik, Garching, Germany ⁶Jozef Stefan Institute, Ljubljana, Slovenia ⁸Istituto per la Scienza e Tecnologia dei Plasmi CNR, Milan, Italy ¹⁰CEA, IRFM, Saint-Paul-lez-Durance, France ¹²See author list of B. Labit *et al.* 2019 Nucl. Fusion **59** 086020

Introduction

Successful operation of future fusion reactors requires detailed understanding of the **balance between gross and net erosion** of plasma-facing components (PFCs), predominantly that of **tungsten (W)**

How has this been addressed?

- Marker samples exposed to series of plasma discharges on ASDEX Upgrade (AUG), marker tiles during entire campaigns on WEST
- Varied parameters: (i) plasma type (L- and H-mode) and gas (D and He), (ii) marker material (W vs. Au vs. Mo vs. Re), (iii) surface roughness
- Spectroscopic data extracted during plasma operations combined with the • results of post-exposure analyses of the marker samples

Main goals of the present work:

- Elucidate how gross and net erosion depend on local plasma conditions and PFC material properties in D and He at the divertor
- Compare the results obtained from two full-W devices with each other

Overview of the experiments

AUG

Exposure of marker samples in the low-field side (outer) strike point (OSP) region – erosion determined from changes in the thickness of the marker layers

Overview of recent AUG results

- <u>General observations in D, see [1-3] and Fig. 2</u>
 - ✓ Erosion peak around OSP, Au and Mo eroded at higher rates (factor of 3-15) than W (Fig. 2a)
 - \checkmark W shows deposition peaks on both sides of the OSP \rightarrow due to local re-deposition and E×B drift
 - \checkmark Strongest impact on net erosion comes from the shape of the $T_{\rm e}$ profile
 - \checkmark Gross erosion can also be determined by post exposure analyses \leftrightarrow sub-mm samples needed

Fig. 2. Net deposition/erosion (pos/neg) of (a) different marker materials in D and in L-mode, (b) Au markers in L- and H-mode, (c) Mo markers in L- and H-mode, (d) Au stripe on the bulk W tile in H-mode.

1] A. Hakola et al., Phys. Scr. T167 (2016)	[2] A. Hakola et al., Nucl. Mater. Energy 12 (2017)
3] A. Hakola et al., Nucl. Mater. Energy 25 (2020)	[4] A. Lahtinen et al., Proc. EPS 2017

Comparison between L- and H-mode

- ✓ Gross erosion amplified by ×10-100, net erosion by a factor of ×2-4 (Fig. 2b) in H-mode
- ✓ Migration can also be enhanced: occurrence of areas with net deposition (Fig. 2c)

З.

- a) Mo-coated (~300 nm) graphite samples with small Au marker spots (~30 nm)
 - \checkmark Two different spot sizes: 1×1 mm² (gross erosion) and 5×5 mm² (net erosion)
- b) Mo- or W-coated (30-150 nm) graphite samples with <u>different surface roughness</u>
 - \checkmark Roughness varied: $R_a \sim 4$ nm $\rightarrow > 2 \mu m$; nominal value $R_a \sim 1 \mu m$
- c) Graphite samples with W and Mo (~30 nm) markers and <u>uncoated trench (d~0.2 mm)</u>
 - ✓ **Prompt re-deposition at the bottom of the trench**

d) Bulk W tile ($R_a \sim 0.2-0.3 \mu m$) with Mo coating and broad (~30 mm) Au markers

Fig. 1. (a)-(d): Schematic drawings of marker sample types; (e) Example of marker samples mounted on a target tile and the OSP position (red line); (g) Cross section of the AUG divertor, target tile position in red.

- Plasma experiments subset of sample types (a)-(d) used in each of them
 - ✓ **L-mode plasmas** with a high T_e (20-30 eV) at the OSP in deuterium
 - ✓ H-mode plasmas with large or small ELMs and inter-ELM T_{e} ~20-30 eV in deuterium

 \checkmark H-mode can lead to strong damage of the markers (Fig. 2d)

material into divertor \rightarrow net deposition if impurities

occurrence of **net erosion – but less than in D**!?

[6] A. Hakola *et al.*, Nucl. Fusion **57** (2017)

[7] S. Brezinsek et al., Proc. PSI 2020

[5] S. Brezinsek et al., Nucl. Mater. Energy 12 (2017)

Erosion in D and He, see [5-7]

predominantly present (Exp 1)

Effect of surface roughness, see [4]

Net

(a)

- ✓ Increasing roughness reduces net erosion (Fig. 3a), roughest samples even show net deposition areas
- Erosion also depends on the type and structure of the **coating** (comparison Mo markers: Fig. 2c and Fig. 3a)

Fig. 3. (b) Net deposition/erosion of W and Mo markers and deposition of W on Mo in He plasmas. OSP positions marked in green (Exp 1) and gray (both Exp 1 and Exp 2) bars.

Overview of recent WEST results

- Spectroscopically determined divertor gross erosion in line with AUG data, see [8]
- Impurities (O, C for WEST) have a strong role in determining the erosion patterns
- Campaign-averaged net erosion/deposition picture similar to AUG results, see [9]: erosion at the strike points, thick co-deposited layers next to them, especially at the inner side
- ✓ Successive exposure to L- and H-mode plasmas, different OSPs used in helium Exp 1: H-mode plasmas, 3 OSPs used; Exp 2: L- and H-mode parts, 2 OSPs used

WEST

- Marker samples exposed to C3 (in D) and C4 (in D and He) campaigns
 - ✓ Part of the tiles removed after C3
- Properties of the marker tiles
 - ✓ Mo and W layers \rightarrow "full-W" components
 - Actual markers (Mo and W) on top

Net erosion rate at the OSP >0.1 nm/s \rightarrow similar to AUG (**NB**! only L-mode on WEST) [8] G. van Rooij *et al.*, Phys. Scr. **T171** (2020) [9] M. Balden et al., Proc. PFMC 2021

Conclusions

1. Small enough marker samples can be used for determining gross and net erosion 2. In H-mode, gross erosion ×10-100 but net erosion ×2-4 higher than in L-mode 3. Rougher surfaces → suppressed net erosion and enhanced formation of co-deposits 4. In He plasmas, erosion amplified by higher mass/charge of plasma particles but impurities can overcompensate this \rightarrow apparent net deposition

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.