GROSS AND NET EROSION BALANCE OF PLASMA-FACING MATERIALS IN FULL-W TOKAMAKS

A. Hakola1, J. Likonen1, A. Lahtinen2, T. Vuoriheimo3, M. Groth3, H. Kumpulainen3, M. Balder3, K. Krieger1, T. Schwarz-Selinger1, S. Brezinsek5, M. Kelemen5, S. Markelj5, M. Baranč5, S. Goussia5, I. Bogdanovic Radovcic5, A. Ucello5, E. Vassallo5, D. Dellaese6, M. Passoni6, M. Sala6, E. Bernard8,10, M. Diez8,10, C. Guillemaut8,10, E. Tsitrone8,10, ASDEX Upgrade Team11, EUROfusion MST1 Team12, and EUROfusion WP PFC Contributors13

INTRODUCTION

Successful operation of future fusion reactors requires detailed understanding of the balance between gross and net erosion of plasma-facing components (PFCs), predominantly that of tungsten (W).

How has this been addressed?
- Marker samples exposed to series of plasma discharges on ASDEX Upgrade (AUG), marker tiles during entire campaigns on WEST
- Varied parameters: (i) plasma type (L- and H-mode) and gas (D and He), (ii) marker material (W vs. Au or Mo vs. Re), (iii) surface roughness
- Spectroscopic data extracted during plasma operations combined with the results of post-exposure analyses of the marker samples

Main goals of the present work:
- Elucidate how gross and net erosion depend on local plasma conditions and PFC material properties in D and He at the divertor
- Compare the results obtained from two full-W devices with each other

OVERVIEW OF THE EXPERIMENTS

AUG
- Exposure of marker samples in the low-field side (outer) strike point (OSP) region – erosion determined from changes in the thickness of the marker layers
 a) Mo-coated (~300 nm) graphite samples with small Au marker spots (~30 nm)
 b) Different spot sizes: 1×1 mm2 (gross erosion) and 5×5 mm2 (net erosion)
 c) Graphite samples with W and Mo (~30 nm) markers and uncoated trench (~0.2 mm)
 d) Bulk W tile (~0.2-0.3 μm) with Mo coating and broad (~30 nm) Au markers

WEST
- Marker samples exposed to C3 (in D) and C4 (in D and He) campaigns
 a) Part of the tiles removed after C3
 b) Properties of the marker tiles
 - Mo and W layers → full-W components
 - Actual markers (Mo and W) on top

OVERVIEW OF RECENT AUG RESULTS
- General observations in D, see [1-3] and Fig. 2
 - Erosion peak around OSP, Au and Mo eroded at higher rates (factor of 3-15) than W (Fig. 2a)
 - W shows deposition peaks on both sides of the OSP due to local re-deposition and ExB drift
 - Strongest impact on net erosion comes from the shape of the Tc profile
 - Gross erosion can also be determined by post exposure analyses → sub-mm samples needed

OVERVIEW OF RECENT WEST RESULTS
- Spectroscopically determined divertor gross erosion in line with AUG data, see [8]
 - Impurities (O, C for WEST) have a strong role in determining the erosion patterns
 - Campaign-averaged net erosion/deposition picture similar to AUG results, see [9]: erosion
 - Effect of surface roughness, see [4]
 - Increasing roughness reduces net erosion (Fig. 3a), strongest samples over the deposition/erosion peak
 - Erosion also depends on the type and structure of the coating (comparison Mo markers: Fig. 2c and 3a)
 - Erosion in D and He, see [5-7]
 - Strong erosion sources in He but also stronger flow of material into divertor → net deposition if impurities predominantly present (Exp 1)
 - Minimizing the presence of impurities (Exp 2) leads to the occurrence of net erosion → but less in D?

CONCLUSIONS

1. Small enough marker samples can be used for determining gross and net erosion
2. In H-mode, gross erosion >10-100 but net erosion x2-4 higher than in L-mode
3. Rougher surfaces → suppressed net erosion and enhanced formation of co-deposits
4. In He plasmas, erosion amplified by higher mass/charge of plasma particles but impurities can overcompensate this → apparent net deposition