Observation Of Electrostatic Confinement Of Runaway Electrons Using

A Biased Electrode In ADITYA-U Tokamak

Tanmay Macwan^{1,2}, J. Ghosh^{1,2}, Harshita Raj³, Kaushlender Singh^{1,2}, Suman Dolui^{1,2}, Dinesh Nath⁴, R. Ganesh^{1,2}, R. L. Tanna¹, Rohit Kumar¹, Suman Aich¹, K. A. Jadeja¹, K. M. Patel¹, E.V. Praveenlal¹, V Panchal¹, Jayesh Raval¹, Shishir Purohit¹, M K Gupta¹, R. Manchanda¹, M. B. Chowdhuri¹, Umesh Nagora¹, P. K. Atrey¹, S. K. Jha¹, D. Raju¹, R. Pal⁵ and ADITYA-U Team¹ Organization

¹Institute for Plasma Research, Gandhinagar, India ²Homi Bhabha National Institute, Mumbai, India ³Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center, Switzerland ⁴Department of Material Science and Engineering, IIT Kanpur, Kanpur, India ⁵Saha Institute of Nuclear Physics, Kolkata, India

tanmay.macwan@ipr.res.in

ID: 1284

ABSTRACT/ INTRODUCTION

- •Control and/or mitigation of runaway electrons (REs) is necessary for the operation of larger fusion devices including ITER
- •ADITYA-U: REs are observed by monitoring the hard X-rays (HXR) produced when they interact with the limiter tiles, usually in low density discharges.
- •In general, the REs are lost as soon as the plasma disrupts (~ 1 ms).
- •However, in the discharges performed by placing a biased electrode inside the last closed flux surface (LCFS), the HXR flux is observed to persist even after plasma disruption.
- •The REs are confined due to the $E_r \times B_\phi$ rotation induced by the external radial electric field.

ADITYA-U Tokamak

- \bullet R = 0.75 m; a = 25 cm
- Toroidal belt limiter
- 2 poloidal quarter ring limiters
- •Toroidal field $B_T: 1.28T$
- • $q_{edge} \sim 3.5 4.0$
- •Plasma current lp: 100 130 kA
- •Plasma duration: 50 100 ms
- •Electron density ne: 1.0 2.0x10¹⁹
- Electron temperature Te: 200 300 eV

ADITYA-U tokamak

EXPERIMENTAL SET UP

- A set of 15 Langmuir probes (LP): measure the edge plasma n_e, T_e.
- Two arrays of Rake LP (each consisting seven equidistant LP) measure the floating potential and its fluctuations.
- $E_r = \Delta V_p / \Delta r$ Radial electric field
- 3 inch NaI (TI) scintillator detector; minimum energy 221 keV
- Plastic scintillator detector; measures HXR flux

EXPERIMENTAL OBSERVATIONS

EXPERIMENTAL OBSERVATIONS

HXR flux persists after disruption; Bias voltage ~ 100 V

Radial Electric Field measured with LP

How are REs confined?

- I_p falls but RE flux persists
- Bias ON during disruption
- Main plasma disrupted
- Role of E_r ?

- $E_r \times B_{\varphi}$ causes RE to rotate?
- Central n_e do not change substancially
- Why no I_p ?
- E_r reduces after bias turned off; How does it sustain after bias?
- Non-neutral plasma? Confinement improvement due to E_r ? [1]

(a) Edge temperature measured at r = 25 cm, (b) Density profile before, during and after disruption

- T_e measured with LP: decreases from 5 eV at the end to disruption to 2 eV at t ~ 100 ms
 The corresponding density profile show:
 During disruption: Sharp profile
 - After disruption: Profile still sharp when bias is ON: Confinement of REs
 After disruption: Profile becomes flat as soon as bias is turned off: RE loss

CONCLUSION

- REs confined using an induced radial electric field by biasing an electrode in the tokamak edge.
- $E_r \times B_{\omega}$ rotation of the RE helps in the confinement?
- Confinement as long as biasing is ON.
- Non-neutrality measurement important for the physics understanding.
- Parametric variation with B_{τ} , I_{p} , biased voltage important

ACKNOWLEDGEMENTS / REFERENCES

Sarasola X, Pedersen T S, First experimental studies of the physics of plasmas of arbitrary degree of neutrality, Plasma Phys. Control. Fusion 54 (2012) 124008