

Study of runaway electron dynamics at the ASDEX Upgrade tokamak during impurity injection using fast gamma-ray spectrometry

<u>A. Shevelev¹, E. Khilkevitch¹, M. Iliasova¹, M. Nocente^{2,3}, G. Pautasso⁴, G. Papp⁴, A. Dal Molin², S. P. Pandya⁵, V. Plyusnin⁶, L. Giacomelli³,</u> G. Gorini^{2,3}, E. Panontin², D. Rigamonti³, M. Tardocchi³, G. Tardini⁴, A. Bogdanov¹, I. Chugunov¹, D. Doinikov¹, V. Naidenov¹, I. Polunovsky¹,

the ASDEX Upgrade Team⁷, EUROfusion MST1 Team⁸

Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany

¹*Ioffe Institute, St. Petersburg, Russia;* ³Institute for Plasma Science and Technology, National Research Council, Milan, Italy; ⁵Institute for Plasma Research, Bhat, near Indira Bridge, Gandhinagar 382428, India;

⁷See the author list of H. Meyer et al. 2019 Nucl. Fusion 59, 112014; E-mail: Shevelev@cycla.ioffe.ru

²Dipartimento di Fisica "G. Occhialini", Università di Milano-Bicocca, Milan, Italy; ⁴Max-Planck-Intitut für Plasmaphysik, Garching bei München, Germany; ⁶Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal; ⁸See the author list of B. Labit et al. 2019 Nucl. Fusion 59, 0860020

OUTCOME

ABSTRACT

- Two high-performance gamma-ray spectrometers with fast LaBr₃(Ce) scintillation-detectors, advanced electronics and analysis algorithms have been developed and commissioned at the ASDEX Upgrade tokamak (AUG).
- HXR measurements were carried out in the RE beam generation regimes by injecting argon gas into a deuterium plasma.
- The electron energy distributions were reconstructed from the measured HXR spectra by deconvolution methods.
- Argon density in AUG plasma after Massive Gas Injection was estimated using HXR measurements.
- The experimentally obtained maximum RE energies at different discharge stages were compared with relativistic test particle simulations that include the effect of toroidal electric field, plasma collisional drag force, synchrotron deceleration force.

BACKGROUND

Gamma-ray spectroscopy of hot plasma allows estimation of the energy distribution of runaway electrons (RE). Observation of confined REs is possible on medium and large tokamaks such as DIII-D, ASDEX Upgrade (AUG) and JET. Experiments of RE generation and suppression, following the onset of plasma disruptions, are conducted in ASDEX Upgrade to validate theoretical models, which can then be used to evaluate post-disruption levels of RE current and design RE mitigation schemes in larger devices like ITER and DEMO. This report is devoted to using gamma-spectrometric measurements provided by two high-performance LaBr3(Ce) gamma-ray spectrometers and the RE dynamics analysis based on the data obtained in experiments with gas injection the AUG plasmas.

INSTRUMENTATION AND APPLIED METHODS

Instrumentation

Two LaBr₃(Ce) spectrometers are used in the HXR measurements in during experiments at AUG with MGI in deuterium plasmas. They allow conducting γ -ray measurement in the range of 0.1-30 MeV with energy resolution ~3.5% (at 662 keV) and counting rate up to ~10⁷ s⁻¹

Argon density evaluation

The analysis of the obtained runaway electron distributions provided the assessments of the gas target's density and the RE beam fraction visible for spectrometers. Assessed argon density coincides with argon fueling efficiency after the first injection, $60 \pm 20\%$, provided in [Pautasso, G., et al., Nucl. Fusion 60 (2020) 086011] AUG #34183

∂ 0.2

Evolution of RE maximum energy

• REs attain their maximum energies of about 20 MeV within 50-100 ms after the

Fig. 1- AUG-HXR spectrometer:

• LaBr₃(Ce) \emptyset 25x17 mm installed in the bunker behind the Bragg spectrometer • DAQ: 14-bit resolution ADC operating in the segmented mode; 400 MHz sampling rate. M. Nocente, et al., RSI 89 (2018) 101124

REDF reconstruction

Fig. 2 - REGARDS spectrometer

- LaBr₃(Ce) Ø25x25 mm installed behind the bio-shield. Lead collimator Ø10×100 mm
- DAQ: 14-bit resolution ADC recording the whole signal; 400 MHz sampling rate. A. Dal Molin, et al., 46th EPS CPP 2019 P1.1015

ML-EM (maximum likelihood estimation using expectation maximization) method was realized in the DeGaSum code for the RE distribution function (REDF) reconstruction

$$y(\varepsilon) = \int_0^{\infty} d\varepsilon' h_d(\varepsilon, \varepsilon') \int_0^{\infty} d\varepsilon'' h_e(\varepsilon', \varepsilon'') f(\varepsilon'') + n(\varepsilon),$$

y – recorded HXR spectrum; ϵ , ϵ' , ϵ'' – energies; $n(\epsilon)$ – statistical noise; f - runaway electron distribution function; h_d - gamma-ray detector response function; h_e is HXR generation function. h_e and h_d calculated with MCNP code in the range of **0.1-30 MeV**

A. Shevelev, et al., NIM A 830 (2016) 102–108

gas injection. After that it gradually decreases

- Test particle calculations with the PREDICT code demonstrated that E_{RF}^{max} to correspond to the measured values, the argon density must be by order of magnitude lower than the values provided by HXR measurements.
- E_{RF}^{max} value decreases from about 18 to 16 MeV when N_{ini} rises from 0.14 to 0.75 bar
- The similarity in the E_{RE}^{max} evolution dynamics for discharges with different amounts of injected argon

d) n

AUG shot #3642

a) l

Fig.7 - Signals of AUG discharge #36426

Fig. 8 – E_{RF}^{max} dependence on the amount of injected argon.

CONCLUSIONS

Fig. 3 - 1.03-1.06 s of the AUG a) HXR discharge #36431: spectrum measured by AUG-HXR (black dots); b) HXR spectrum measured by REGARDS (black dots); c) REDF reconstructed from the AUG-HXR spectrum; d) REDF reconstructed from the REGARDS spectrum

- Two high-performance LaBr₃(Ce) spectrometers have been developed
- HXR measurements were carried out in MGI experiments with RE beam generation
- RE distributions were reconstructed from measured HXR spectra using the DeGaSum code
- Two spectrometers with small scintillators made it possible to analyze gamma radiation caused by runaway electrons in the energy range up to 30 MeV.
- The evolution of RE Emax was studied for various amounts of injected argon: runaway electrons attain their maximum energies of about 20 MeV within 50-100 ms after the gas injection. After that it gradually decreases
- The density of argon interacting with the RE beam was estimated
- Test particle calculations demonstrated that E_{RE}^{max} to correspond to the measured values, the argon density must be by order of magnitude lower than the values provided by HXR measurements.
- The realized system allowed testing the technical solutions and data processing algorithms for ITER runaway diagnostics.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

The work was funded in part under RF State Contract No. N.4a.241.19.20.1042 dated 21.04.2020 between the State Atomic Energy Corporation ROSATOM and the Institution "Project Center ITER". IST activities also received financial support from "Fundação para a Ciência e Tecnologia" through projects UIDB/50010/2020 and UIDP/50010/2020.