1. INTRODUCTION

- The high performance scenarios, known as high performance scenarios (HPS), have been explored in JET as part of the ITER operation. These scenarios are important for optimizing the operation of JET and preparing for the ITER. The two parameters defined in [7] describe the link between the temporal profile of the density and the confinement time which affects the plasma performance.

2. DISRUPTION PATHS IN TERMINATION

- The disruption paths in termination (DPT) of the high performance scenario in JET have been explained in this section. The DPTs are shown in the figure 2. The DPTs are critical for understanding the disruptions and their consequences for the plasma operation.

3. DISRUPTION AVOIDANCE SCHEMES

- Various schemes have been developed to avoid disruptions in JET. These schemes include the use of pellet injection, magnetic perturbations, and the injection of fast ions. These schemes have been implemented in JET and have shown promising results.

4. REAL-TIME RECONSTRUCTION AND ANOMALY DETECTION ON BEAMLETOMOGRAPHY

- Real-time reconstruction and anomaly detection on beamletomography have been implemented in JET. This technique allows for the detection of anomalies in the plasma operation and helps in optimizing the operation of JET.

5. TERMINATION ALGORITHM

- A termination algorithm has been developed for JET which allows for the optimization of the operation of JET. The algorithm has been tested in JET and has shown promising results.

6. CONCLUSIONS

- The conclusions of the paper are that the development of the algorithms and techniques for the optimization of JET operation is critical. These algorithms and techniques can help in improving the performance of JET and preparing for the ITER operation.