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ABSTRACT INJECTION OF HYDROGEN PELLETS INTO DEUTERIUM PLASMA
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r/a<0.95, but falling sharply for shallower pellet deposition. 2 To0 ~ - ~ : (IPB98Y2 and from [6]).
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BACKGROUND “‘
Comparison of pellet fuelling using different

combinations of hydrogen isotopes

e|n ITER the density of deuterium and tritium will be controlled by injection
of cryogenic pellets separately to allow active isotope ratio control.

JPN 97100

*ITER pellet velocity is limited to 300m/s. This combined with high pedestal : 3\,\;\‘\%\&\:\\‘_’/

, , , % §§ . At r/a=0.5 :hydrogen diffusivity is
temperatures and small relative pellet size results in shallow pellet B = ewaerl Dy = 0.53m?/s.,  xops = 2.7m2/s
ablation. This paper presents unique pellet fuelling dataset from JET = ur > so that Dy /xerr = 0.20. This value is
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DEUTERIUM PELLETS INTO HYDROGEN PLASMA
- Isotope mix control by hydrogen pellets,
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