
M. Iliasova1*, A. Shevelev1, E. Khilkevich1, Ye. Kazakov2, V. Kiptily3, M. Nocente4,5, L. Giacomelli5, T. Craciunescu6, A. Dal Molin4, 

D. Rigamonti5, M. Tardocchi5, D. Doinikov1, G. Gorini4,5, V. Naidenov1, I. Polunovsky1 and JET Contributors†

1Ioffe Institute, St. Petersburg, Russia 2Laboratory for Plasma Physics LPP-ERM/KMS, Brussels, Belgium 
3Culham Centre for Fusion Energy, Abingdon, United Kingdom 4Dipartimento di Fisica “G. Occhialini”, Università di Milano-Bicocca, Milan, Italy
5Institute for Plasma Physics and Technology, National Research Council, Milan, Italy 6Institute of Atomic Physics, Magurele-Bucharest, Romania
†See the author list of  “Overview of JET results for optimising ITER operation” by J. Mailloux et al. to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021) 
*Corresponding author: m_iliasova@mail.ioffe.ru

Gamma-ray spectrometry provides:
•2.86, 3.37 and 3.59 MeV γ-lines of the 9Be + D reactions were identified in measured spectra.

A tail temperature <TD> was estimated as ~600 keV in Maxwellian approximation;
• γ-radiation from 3He(D, γ)5Li were detected. Fusion α-particles were produced in 3He(D,p)4He;
• 3He(D, γ)5Li and 3He(D,p)4He fusion rates were assessed from the intensity of measured γ-

radiation. The averaged α-particle production rate is <Rα> ≈ 7 ∙ 1015 s-1;
• Fusion α-particles from 3He(D,p)4He reaction were observed: 4.44 MeV γ-line of 9Be(α,nγ)12C

was identified in the measured spectra. Fusion α-particles are confined in the plasma;
•Broadening of the 4.44 MeV γ-line due to Doppler effect was observed in spectra measured

by the HPGe. Energy and angular distributions of the confined α-particles were reconstructed.
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• Fast D-ions and fusion born α-particles in D-3He plasmas were studied.
•To reconstruct the energy distributions of D-ions, in the experiments with the 3-ion ICRH

scheme D–(DNBI)–
3He, intensities of the γ-lines of the 9Be(D,pγ)10Be and 9Be(D,nγ)10B

reactions were used together with excitation functions of these reactions.
•The 3He(D,p)4He reaction rate and α-particle spatial distribution were obtained by measuring

17 MeV γ-rays from the 3He(D,γ)5Li reaction, which is a weak branch of 3He(D,p)4He reaction.
•The energy and pitch-angle distribution of the confined α-particles were reconstructed by

means of the Doppler shape analysis of the 4.44-MeV γ-line of the 9Be(α,nγ)12C reaction.

ABSTRACT
In the support of ITER, a variety of fast-ion/α-particle diagnostics is under test. Monitoring of
fast particles is a top priority for developing effective discharge scenarios with additional (NBI
and ICRF) plasma heating. JET is the largest operating fusion machine with powerful additional
heating systems, which is equipped with a broad range of fast particle diagnostics essential for
ITER. γ-ray spectrometry of the plasma [1] is a tool giving information on the heating efficiency
and fast-ion confinement. The source of γ-ray is nuclear reactions between fuel ions as well as
due to interaction of confined ions and plasma impurities, i.e. beryllium in JET and ITER. JET is a
test bed for fast-ion diagnostics, in particular γ-ray spectrometry.

BACKGROUND

INSTRUMENTATION
In the experiments two large volume LaBr3(Ce) Ø3”x6” spectrometers with vertical and quasi-
tangential LoS are used. In some discharges the vertical LaBr3(Ce) detector is replaced with a
high-resolution HPGe spectrometer for measurements of the Doppler broadening of γ-lines in
recorded spectra [2]. The pulse height analysis is conducted in the off-line regime with an
application of an advanced method of the amplitude determining. In addition, the γ-ray
camera, consisting of 19 compact LaBr3(Ce) Ø25mm×17mm detectors with 10 horizontal and
9 vertical LoS, is used.
RECONSTRUCTION METHODS
To reconstruct the D-ions energy distribution two methods were applied: 1) based on the
analysis of intensities of the γ-transitions in nuclear reactions between D and 9Be, which is the
major impurity in JET-ILW plasma; 2) based on analysis of the Doppler broadening of γ-lines
corresponding to these γ-transitions. The fast D-ions' energy distribution functions were
reconstructed with the specially developed γ-ray spectrum analysis code DeGaSum [3].
A spectrum recorded by the detector S(E) has the form:

𝑆 𝐸 = න
0

+∞

𝑓𝛾 𝐸′ ℎ 𝐸, 𝐸′ 𝑑𝐸′ + 𝑛 𝐸 , (1)

where fγ is the initial γ-spectrum emitted from plasma, h is the detector response function, n is
Poisson noise, and E, E’ is the γ-ray energy. To reconstruct fγ(E) by deconvolution method, we
used the spectrometer response functions h(ε) calculated with the MCNP code.

The intensity of gamma-ray transition is defined by such physical parameters of plasma as the
densities of fast ions and impurity, a partial cross-section of the γ-ray transition, a distribution
function of ions. The Doppler effect deforms the shapes of gamma-lines emitted from plasma
by excited nuclei. The analysis of the Doppler broadened peak shape adjusts the energy and
angular distribution of a given shape to the shape of a line and searches for the energy and
angular distribution in an interval form.

INSTRUMENTATION AND METHODS
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FIG.1. Left: Signals of JET-ILW pulses with mixed D-3He plasmas; Right: γ-spectrum recorded with 
the vertical and tangential LaBr3(Ce) (black), restored γ-ray energy distribution (red).

OUTCOME: D-ions energy distribution
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FIG.2. Left: Excitation function of the γ-transition from the 9Be(D,nγ)10B and 9Be(D, pγ)10Be 
reactions [4]. Right: The reconstructed using 3.37-, 2.86- and 3.59-MeV γ-lines energy 

distribution of the D-ions for LaBr3(Ce) detectors with tangential and vertical LoS.
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FIG.3. Left: γ-spectrum recorded with the vertical HPGe (black line) and reconstructed γ-ray 
energy distribution (red line); Right: D-ions energy distribution for tangential LaBr3(Ce) detector 

and vertical HPGe detector.

OUTCOME: Doppler line shape analysis
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FIG.4. Left: The measured by HPGe detector 3.37 MeV γ-transition line. 
Right: reconstructed fast D-ions angular distribution relatively to the magnetic axis.

The 3.6-MeV α-particles were generated in the fusion reaction 3He(D,p)4He. Distributions of the
confined α-particles can be obtained by analysis of the 4.44-MeV γ-rays from the 9Be(α,nγ)12C.
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FIG.5.  Left: The measured by HPGe detector 4.44 MeV γ-transition line. Center and right: 
Reconstructed energy and angular distribution of confined α-particles in the apparent plasma. 

volume.
OUTCOME: Fusion-born α-particle production 

CONCLUSION
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The source of the fusion-born α-particles could be obtained by measuring 16.7 MeV γ-rays from
3He(D,γ)5Li reaction, the weak branch of the fusion reaction 3He+D. Ground and 1st excited
states of 5Li are very short-lived, the γ-lines are broad – Γγ0≈1.23 MeV and Γγ1≈6.6 MeV. Then
the γ-spectrum is described by convolution of a superposition of two γ-distributions:
fγ(E)=k0fγ0(E)+k1fγ1(E). Energy distributions of γ-quanta fγ0(E) and fγ1(E) can be described by the
Breit-Wigner formula [5]. Energy distribution of γ can be reconstructed by fitting the weight
coefficients k0 and k1. The 3He(D,γ0)5Li/3He(D,p)4He branch ratio averaged over the D-ions dis-
tribution 〈B〉 ≈ 9.1∙10-5 [6]. D(3He, p)4He reaction rate in the visible plasma volume is ~3∙1013 s-1.
The fraction of the γ-source visible for a vertical spectrometer was estimated as 60.4%. The
averaged α-particle production rate was estimated as <Rα> ≈ 7 ∙ 1015 s-1

.
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FIG.6. Left: The measured spectrum of γ-radiation in the energy range from 10 to 20 MeV.
Center: 2D tomographic reconstruction of γ-emission profiles obtained with γ-cameras. 

Right: Radial distribution of a γ-source in the equatorial plane of JET. The red shaded area shows 
the part of the distribution visible for the vertical spectrometer.
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