

Gamma-ray spectrometry for confined fast ion studies in D³He plasma experiments on JET <u>M. Iliasova^{1*}</u>, A. Shevelev¹, E. Khilkevich¹, Ye. Kazakov², V. Kiptily³, M. Nocente^{4,5}, L. Giacomelli⁵, T. Craciunescu⁶, A. Dal Molin⁴,

D. Rigamonti⁵, M. Tardocchi⁵, D. Doinikov¹, G. Gorini^{4,5}, V. Naidenov¹, I. Polunovsky¹ and JET Contributors[†]

¹*Ioffe Institute, St. Petersburg, Russia*

³Culham Centre for Fusion Energy, Abingdon, United Kingdom

⁵Institute for Plasma Physics and Technology, National Research Council, Milan, Italy

²Laboratory for Plasma Physics LPP-ERM/KMS, Brussels, Belgium ⁴Dipartimento di Fisica "G. Occhialini", Università di Milano-Bicocca, Milan, Italy ⁶Institute of Atomic Physics, Magurele-Bucharest, Romania

[†]See the author list of "Overview of JET results for optimising ITER operation" by J. Mailloux et al. to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021) *Corresponding author: m_iliasova@mail.ioffe.ru

ABSTRACT

- Fast D-ions and fusion born α -particles in D-³He plasmas were studied.
- To reconstruct the energy distributions of D-ions, in the experiments with the 3-ion ICRH scheme D– (D_{NRI}) –³He, intensities of the γ -lines of the ⁹Be $(D,p\gamma)^{10}$ Be and ⁹Be $(D,n\gamma)^{10}$ B reactions were used together with excitation functions of these reactions.
- The ³He(D,p)⁴He reaction rate and α -particle spatial distribution were obtained by measuring 17 MeV γ -rays from the ³He(D, γ)⁵Li reaction, which is a weak branch of ³He(D,p)⁴He reaction.
- The energy and pitch-angle distribution of the confined α -particles were reconstructed by means of the Doppler shape analysis of the 4.44-MeV y-line of the ⁹Be(α ,ny)¹²C reaction.

INSTRUMENTATION AND METHODS

BACKGROUND

In the support of ITER, a variety of fast-ion/ α -particle diagnostics is under test. Monitoring of fast particles is a top priority for developing effective discharge scenarios with additional (NBI and ICRF) plasma heating. JET is the largest operating fusion machine with powerful additional heating systems, which is equipped with a broad range of fast particle diagnostics essential for ITER. γ-ray spectrometry of the plasma [1] is a tool giving information on the heating efficiency and fast-ion confinement. The source of γ -ray is nuclear reactions between fuel ions as well as due to interaction of confined ions and plasma impurities, i.e. beryllium in JET and ITER. JET is a test bed for fast-ion diagnostics, in particular γ-ray spectrometry.

OUTCOME: Doppler line shape analysis

INSTRUMENTATION

In the experiments two large volume LaBr₃(Ce) \emptyset 3"x6" spectrometers with vertical and quasitangential LoS are used. In some discharges the vertical LaBr₃(Ce) detector is replaced with a high-resolution HPGe spectrometer for measurements of the Doppler broadening of γ-lines in recorded spectra [2]. The pulse height analysis is conducted in the off-line regime with an application of an advanced method of the amplitude determining. In addition, the γ -ray camera, consisting of 19 compact LaBr₃(Ce) Ø25mm×17mm detectors with 10 horizontal and 9 vertical LoS, is used.

RECONSTRUCTION METHODS

To reconstruct the D-ions energy distribution two methods were applied: 1) based on the analysis of intensities of the γ -transitions in nuclear reactions between D and ⁹Be, which is the major impurity in JET-ILW plasma; 2) based on analysis of the Doppler broadening of γ-lines corresponding to these γ -transitions. The fast D-ions' energy distribution functions were reconstructed with the specially developed γ -ray spectrum analysis code DeGaSum [3]. A spectrum recorded by the detector *S*(*E*) has the form:

$$S(E) = \int_{0}^{\infty} f_{\gamma}(E')h(E,E')dE' + n(E), \quad (1)$$

where f_v is the initial γ -spectrum emitted from plasma, h is the detector response function, n is Poisson noise, and E, E' is the γ -ray energy. To reconstruct $f_{\nu}(E)$ by deconvolution method, we used the spectrometer response functions $h(\varepsilon)$ calculated with the MCNP code.

FIG.4. Left: The measured by HPGe detector 3.37 MeV γ-transition line. *Right: reconstructed fast D-ions angular distribution relatively to the magnetic axis.*

The 3.6-MeV α -particles were generated in the fusion reaction ³He(D,p)⁴He. Distributions of the confined α -particles can be obtained by analysis of the 4.44-MeV γ -rays from the ⁹Be $(\alpha,n\gamma)^{12}$ C.

FIG.1. Left: Signals of JET-ILW pulses with mixed D-³He plasmas; Right: γ-spectrum recorded with the vertical and tangential LaBr₃(Ce) (black), restored γ -ray energy distribution (red).

The intensity of gamma-ray transition is defined by such physical parameters of plasma as the densities of fast ions and impurity, a partial cross-section of the γ -ray transition, a distribution function of ions. The Doppler effect deforms the shapes of gamma-lines emitted from plasma by excited nuclei. The analysis of the Doppler broadened peak shape adjusts the energy and angular distribution of a given shape to the shape of a line and searches for the energy and angular distribution in an interval form.

OUTCOME: D-ions energy distribution

reactions [4]. Right: The reconstructed using 3.37-, 2.86- and 3.59-MeV γ-lines energy distribution of the D-ions for LaBr₃(Ce) detectors with tangential and vertical LoS.

FIG.6. Left: The measured spectrum of γ-radiation in the energy range from 10 to 20 MeV. Center: 2D tomographic reconstruction of γ -emission profiles obtained with γ -cameras. *Right: Radial distribution of a γ-source in the equatorial plane of JET. The red shaded area shows* the part of the distribution visible for the vertical spectrometer.

The source of the fusion-born α -particles could be obtained by measuring 16.7 MeV γ -rays from ³He(D, γ)⁵Li reaction, the weak branch of the fusion reaction ³He+D. Ground and 1st excited states of ⁵Li are very short-lived, the γ -lines are broad – $\Gamma_{\nu 0} \approx 1.23$ MeV and $\Gamma_{\nu 1} \approx 6.6$ MeV. Then the γ -spectrum is described by convolution of a superposition of two γ -distributions: $f_{v}(E) = k_0 f_{v0}(E) + k_1 f_{v1}(E)$. Energy distributions of γ -quanta $f_{v0}(E)$ and $f_{v1}(E)$ can be described by the Breit-Wigner formula [5]. Energy distribution of γ can be reconstructed by fitting the weight coefficients k_0 and k_1 . The ³He(D, γ_0)⁵Li/³He(D,p)⁴He branch ratio averaged over the D-ions distribution $(B) \approx 9.1 \cdot 10^{-5}$ [6]. D(³He, p)⁴He reaction rate in the visible plasma volume is ~3.10¹³ s⁻¹. The fraction of the γ -source visible for a vertical spectrometer was estimated as 60.4%. The averaged α -particle production rate was estimated as $< R_{\alpha} > \approx 7 \cdot 10^{15} \text{ s}^{-1}$

CONCLUSION

Gamma-ray spectrometry provides:

• 2.86, 3.37 and 3.59 MeV γ -lines of the ⁹Be + D reactions were identified in measured spectra. A tail temperature $<T_{D}>$ was estimated as ~600 keV in Maxwellian approximation;

FIG.3. Left: y-spectrum recorded with the vertical HPGe (black line) and reconstructed y-ray energy distribution (red line); Right: D-ions energy distribution for tangential LaBr₃(Ce) detector and vertical HPGe detector.

• γ -radiation from ³He(D, γ)⁵Li were detected. Fusion α -particles were produced in ³He(D,p)⁴He; • 3 He(D, γ)⁵Li and 3 He(D,p)⁴He fusion rates were assessed from the intensity of measured γ radiation. The averaged α -particle production rate is $\langle R_{\alpha} \rangle \approx 7 \cdot 10^{15} \text{ s}^{-1}$;

- Fusion α -particles from ³He(D,p)⁴He reaction were observed: 4.44 MeV γ -line of ⁹Be(α ,n γ)¹²C was identified in the measured spectra. Fusion α -particles are confined in the plasma;
- Broadening of the 4.44 MeV γ-line due to Doppler effect was observed in spectra measured by the HPGe. Energy and angular distributions of the confined α -particles were reconstructed.

[1] Kiptily V.G., Cecil F.E. and Medley S.S., Plasma Phys. Control. Fusion 48 (2006) R59–R82 [2] Nocente M., (23rd High Temp. Plasma Diagnostic Conf. – HTPD2020, virtual, 2020), P7E18 [3] Shevelev A.E. et al, Nucl. Fusion 53 (2013) 123004 [4] Experimental Nuclear Reaction Data (EXFOR), <u>https://www-nds.iaea.org/exfor/</u> [5] Buss W., Del Biancco W., Waffler H., Ziegler B., Nucl. Phys. A112 (1968) [6] Cecil F.E. et al, Phys. Review C 32 (1985) 690

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.