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Overview

Motivation for this study of power balance:

● Ti from CXRS in JET-ILW (most often) difficult to analyse, long delays, often 
unavailable and sometimes inconsistencies (W nuisance lines)
⇒ need consistency checks

● Ti <Te at low power, Ti >Te in high power ‘DT scenarios’
Neutron rates depend strongly on Ti 
⇒ need better surrogates than simply assuming Ti =Te

● Power balance is an essential part of any transport study, e.g. for 
comparison with GK modelling

Contents :

● Ion-electron power balance in JET
● “Equipartition temperatures”
● Fraction of ion heating source going to electrons by equipartition
● Main ion - impurity power balance
● Comparison with TRANSP
● Application of power balance for Ti profile reconstruction
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ION-ELECTRON POWER BALANCE
Stationary heat balance of a main (i) and an impurity (z) species:

The ‘Q’s are volume integrals 
from 0 to V(r) of the local 
power densities, ‘p’s

net source i-e and i-z equipartition

Equipartition power density in W/m3 for any  two 
species i & j:

ceq=3.2542×10-32 W eV1/2 m3  

(from Wesson, also NRL formulary)

Example:
Electron-ion PB based on measurements of Te, 
Ti and heat deposition from PENCIL
(no distinction between impurities and main 
ions here)
ΔQ

i
/Q

i
 was evaluated assuming ΔT

i
/T

i
=15%

ref: H. Weisen, NF 2020

https://iopscience.iop.org/article/10.1088/1741-4326/ab6307/pdf
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ION-ELECTRON POWER BALANCE (2)

“Equipartition temperature”

● In JET Te(ρ) and ne(ρ)  are reliably 
measured using two Thomson 
scattering systems.

● The evaluation of Ti(ρ) from CXRS in 
JET-ILW remains slow and 
error-prone because of the presence 
of W nuisance lines.

● Alternative way at looking at the 
electron-ion power balance:
“What would be Ti(ρ) be if a given 
fraction of the ion/electron  
deposited power was transferred 
to/from the electrons by thermal 
equipartition?”

● Answer defines two families of 
‘equipartition temperatures’ with 
examples shown for different 
fi(ρ)=Qie(ρ)/Qis(ρ) and 
fe(ρ)=Qei(ρ)/Qes(ρ)
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JET overview: typical ITG situation

● Very wide range of conditions from JETPEAK
● For medium to high power NBI:    1<Qie/Qis<0.4

cases with most accurate PB: 1<Qie/Qis<0.25
ΔQie/Qie<0.1
all
JET-C

Ti >Te Te >Ti

● Qi/(Qi+Qe) in range 0.5-0.7 for Ti >Te 
● Qi/(Qi+Qe) mostly in range 0.5-0.8 for Te >Ti

⇒ Typical for ITG dominated discharges
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Ion-impurity power balance

● The usual assumption  Tmain =Timp  is not warranted at high power/low density!
● The energy exchange by collisional heating (NBI, ICRH, even ECH) scales as Z2/A 

and is hence 10 larger for Neon ions (used for CXRS in JET-ILW) than for D ions!
● The stronger heating for higher Z is strongly counteracted by thermal exchange 

between impurities and main ions
● Additionally, main ions and impurities undergo transport
● Solution for Tz/Ti with explicit species dependence in H. Weisen, NF 2020

● Q110 is a reference ‘equipartitionality’
● Tz/Ti scales nearly linearly with Qi/Q110
● No significant species dependence for Z>3

⇒ simplifies composite Tz profiles from 
several impurities. Mostly Qi/Q110<0.1

𝛼=𝜒Z/𝜒i=1

https://iopscience.iop.org/article/10.1088/1741-4326/ab6307/pdf
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Species dependencies for Qi/Q110=0.1

Histograms for Qi/Q110

• Qi/Q110<0.1 for majority of cases
• Qi/Q110∼0.1 is obtained at high PNBI, 

low density, e.g. AT, hybrid

Species-resolved for Qi/Q110=0.1 
and 4 main species, 𝛼=𝜒Z/𝜒i=1

• All commonly used impurities for 
diagnostics have Tz within 1% 
B,N,C, Ne, Ar, Ni are especially close 
to each other

• Convenient, as no need to distinguish 
between Timp from different species

• Highest TH/TT for hydrogen impurity in 
tritium plasma (~1.28!)

All data
JET-ILW only



TZ/TD for Qi/Q110=0.1 in D/T mixture

• Calculation for mixed main species technically similar to single main species, see H. 
Weisen, NF 2020

• Unsurprisingly, Tz/Tm
 in mixed isotope plasmas assumes values intermediate 

between those of single isotope plasmas.
• TT/TD ≈0.95 for  Qi/Q110=0.1 (hybrids, AT)
• Inconsequential for DT operation
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Comparison with TRANSP-SLVTX

7, left. Both calculate a slightly larger than the iterative solution presented in [2], 
fig. 7, right. 

Fig 7. Comparison of θ=TC/TD obtained with the analytical procedure (e.q. 4, left ) 
and the iterative procedure ([2], right) with the stationary-state Matlab version of 
SLVTX (vertical axis) for ρ=0.2.

● Dataset of over 300 TRANSP JET-C runs “Neutron deficit” H. Weisen NF 2018] 
● Implemented a stationary state Matlab version (𝝏/𝝏t=0) of the procedure intended for 

TRANSP routine SLVTX (S.D. Scott, PPPL document, 4.2.2003)
● SLVTX is based on the idea of a local confinement time and applied it to the same 

input data as in our own calculations (analytical and iterative).
● The SLVTX (matlab) and analytical methods are virtually indistinguishable. Both 

calculate a slightly larger than the fully iterative solution presented H. Weisen NF 
2020. In all cases 𝛼=𝜒Z/𝜒i=1 is assumed.
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Likely error of sign in TRANSP-SLVTX

● While the intended algorithm behind the SLVTX routine in 
TRANSP is correct, the code implementation is not.

● At high Qi/Q110 it predicts TT/TD twice as high as the Matlab 
implementation and as the analytical and iterative methods

● The difference is not a different assumption for 𝛼=𝜒Z/𝜒i. 
However, setting 𝛼=𝜒Z/𝜒i =-1 brings “agreement” suggesting a 
sign error SLVTX for a term designating 𝛼=𝜒Z/𝜒i or QZ.

● Despite simplifications (TZ/Ti=∇TZ/Ti) the iterative solution 
mostly provides Ti profiles close to satisfying 𝜒Z/𝜒i =1, the 
analytical solution falls short (although TZ is very similar).

● TRANSP is far from satisfying 𝜒Z/𝜒i =1.
● TRANSP also produces many cases where QCD/QCs>1, i.e. the 

impurity power balance is crassly unphysical. (For the iterative 
method QCD/QCs≃0.77)

iterative analytical 
& SLVTX 
(Matlab)

TRANSP
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Being creative

1. You are desperate for TD profiles (e.g. P. Sirén et al, IAEA FEC 2020) & no TZ from CXRS 
2. <TNi26+> from X-ray crystal spectroscopy always available, but line averaged, rotationally 

shear-smeared and systematically above available and believable Tz from CXRS 

ANSWER

1. Regress TZ CXRS with <TNi26+>  and <ΩNi26+> to std=250eV (left figure)
2. Infer equivalent TZ CXRS ⛤ for any plasma with good Ni26+ data at that point (right figure)
3. Extrapolate TZ to whole profile vie equipartition temperature (black ⏤)
4. Get Tmain from ion-impurity power balance calculations (grey--). Note: doesn’t work for ion-ITBs!

one of the 
few high 
RDD hybrids 
that has Ti 
from CXRS

Ne10+

Ni26+ raw

fit
⛤
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Summary

● Equipartition limits show far the temperatures of plasmas species can go apart
● In most chiefly ion heated plasmas in JET (Ti >Te , e.g. NBI) the ions lose up to 

~30% of their input power to the electrons by thermal transfer
● The fraction of power lost to electrons is found to be close to constant for most of 

the plasma cross section
● In a wide range of JET plasmas, whether Ti >Te or Ti <Te , we find Qi/(Qi+Qe)≥0.5, 

which is a hallmark of ITG-dominated micro-turbulent transport
● Main hydrogenic ion temperatures near the magnetic axis are typically a few % 

lower than impurities, exceptionally up to 10% at high power and low density. The 
tritium temperature is predicted to be a few % below the deuterium temperature.

● For Z>3 impurity temperatures are virtually species-independent.
● The analytical method and a Matlab implementation of SLVTX produce virtually 

indistinguishable results. Both predict slightly larger TC/TD than the iterative method.
● Someone should shoulder the ungrateful task of revising the SLVTX routine’s 

vintage Fortran code in TRANSP.
● The power balance calculation is made good use of at JET by allowing to infer an 

entire ion temperature profile from a single local or line-integrated measurement, 
e.g. from Ni26+ emission, when charge exchange profile measurements are 
unavailable.


