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Analysis of nonlinear mode-mode interaction using
Hilbert transform on HL-2A
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In magnetically confined fusion devices, nonlinear wave-wave interaction has been noticed to play important
roles in the production of new modes. On NSTX, nonlinear interactions among low-frequency energetic par-
ticle modes (EPMs) and high-frequency toroidal Alfvén modes (TAEs) have been reported [1]. On JET, a 3/2
neoclassical tearing mode (NTM) is stabilized through the nonlinear coupling among 3/2, 4/3 and 7/5 modes
[2]. On HL-2A, high frequency coherent modes can be driven by nonlinear wave-wave coupling [3]. Rou-
tinely, bispectral analysis is applied to detect the nonlinear interaction [4]. However, a number of statistical
ensembles are necessary for the bispectral analysis. Here, we propose to use Hilbert transform [5] for the
analysis of nonlinear wave-wave interaction without many ensembles.
Two spontaneously excited waves could generate new waves through nonlinear interaction. Supposing there
are two waves b and c, wave b is cosθb = cos(2πfbt+ ϕb), and wave c is cosθc = cos(2πfct+ ϕc). Here, θb and
θc are the time dependent instantaneous phases, and ϕb and ϕc are the initial phases. If nonlinear interaction
exists between b and c, the generated new wave d should be the product of the two waves, cos θd = cos θb
cosθc = cos(2π(fb+fc))t+ϕb+ϕc)) + cos(2π(fb−fc)t+ϕb-ϕc))/2. Wave d will have the frequency components of
fb+fc, and the initial phases have to obey ϕd = ϕb+ϕc. This condition is actually θd = θb+θc. For simplification,
we focus on the case of fd = fb + fc, the analysis of fd = fb − fc is actually in a similar way. Let’s generate a
synthetic signal of 10 ms with a sampling rate of 1 MHz, including three waves b, c, d and some random noise.
The frequencies of the three waves are fb = 30 kHz, fc = 95 kHz and fd = fb + fc = 125 kHz. If wave d is the
result of mode coupling between wave b and wave c, the phase relation θd = θb+θc, i.e. θd − θc = θb has to be
satisfied. In Fig. 1(a), wave b (blue curve), wave c (red curve), wave d (orange curve) and the sum of b, c, d and
a random noise (purple curve) are plotted. In Fig. 1(b), the power spectral density (PSD) of the purple signal
in Fig. 1(a) shows the peaks of three waves at 30 kHz, 95 kHz, and 125 kHz. Supposing θb jumps at 0.5 ms, 1
ms, (in the intervals of 0.5 ms) to 9.5 ms (while θc does not jump), to satisfy the phase relation θd − θc = θb,
θd has to jump at the same timings. In Fig. 1(a), the phase jumps of wave b and wave d at 0.5ms are labeled.
The phase difference between wave d and wave c∆θdc = θd − θc, and the phase of wave b θb for Fig. 1(c) are
shown in Fig. 1(d). The jump of both θdc and θb at 0.5ms is clearly observed. Due to the phase relation, the
two phases are locked together. The fast fourier t ransform (FFT) bicoherence spectrogram is shown in Fig.
1(d). A bright spot is observed at (θc, θb) = (95, 30) kHz, indicating that the nonlinear coupling exists among
waves b, c and d.



Figure 1: In synthetic test (a) The blue curve is wave b (30 kHz), the red curve is wave c (95 kHz), the
orange curve is wave d (125 kHz), and the synthetic signal (purple curve) is the sum of b, c, d and a
random noise. (b) The power spectral density of the synthetic signal. (c) The time evolution of θdc and
θb. (d) The FFT bicoherence spectrogram of the synthetic signal.

Fig. 2 (a) and (b) are the power spectrogram and the bicoherence spectrogram of the mirnov coil signal,
respectively. The nonlinear coupling among AM1, AM2 and TM has been identified by observing the bright
spot at (f1, f2) = (129 kHz, 10 kHz) and (f1, f2) = (139 kHz, 10 kHz). θAM1, θAM2 and θTM stand for the
instantaneous phases of AM1, AM2 and TM, respectively. In Fig. 2 (b), the blue curve is the phase delay
between AM1 and AM2, i.e. ∆θ12 = θAM1 − θAM2, and the red curve is θTM. We could observe that ∆θ12
and∆θTM are roughly synchronized with each other, and the maximum value of cross-correlation coefficient
between them r(∆θ12, θTM) reaches 0.84, as shown in Fig. 2 (c). As a counter-example, we check the phases
of AM1, AM2 during 696-698 ms and 8-12 kHz band-passed waveform during 676-678 ms. The first two waves
and the last wave are in different timings, and the TM during 676-678 ms is not in 8-12 kHz, as shown in the
power spectrogram in Fig. 2 (b). Therefore there are basically no nonlinear coupling among these three modes.
The phase difference between AM1 and AM2 during 696-698ms∆θ12, and 8-12 kHz band-passed wave during
676-678ms θ8−12kHz have been checked in Fig. 2 (e). In this figure, the phases are not synchronized at all,
which means that nonlinear interaction does not exist. The maximum value of cross-correlation coefficient
between ∆θ12 and θ8−12kHz, r(∆θ12, θ8−12kHz) is only 0.1, as shown in Fig. 2 (f).



Figure 2:

Figure 2: (a) The power spectrogram; (b) The FFT bicoherence spectrogram; (c) The blue curve is the time
evolution of ∆θ12, and the red curve is the time evolution of θTM. (d) The time evolution of r(∆θ12, θTM)
during [-50, 50]µs. (e) The blue curve and the red curve are the time evolutions of ∆θ12, and θ8−12kHz,
respectively. (f) The time evolution of r(∆θ12, θTM) during [-50, 50]µs.

As a summary, the Hilbert transform allows us to track the phase of a mode without many ensembles. In
our work, the nonlinear interactions among the 139kHz and 129kHz AMs and the 10kHz TM on HL-2A were
checked using phase tracking with Hilbert Transform. Results show that the phase delay between two AMs
∆θ12 is approximately synchronized with the phase of TM θTM and the maximum of the normalized cross-
correlation is 0.84. In a counter example, the maximum of normalized cross-correlation is only 0.18.
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