

Recent key contributions of ICRF heating in support of plasma scenario development and fast ion studies on JET and AUG

<u>M.J. Mantsinen</u>^{1,2}, R. Bilato³, VI. Bobkov³, C. Challis⁴, D. Gallart¹, M. Garcia-Muñoz⁵, P. Jacquet⁴, A. Kappatou³, Ye.O. Kazakov⁶, V. Kiptily⁴, E. Lerche⁶, P. Mantica⁷, J. Manyer¹, M. Nocente^{7,8}, T. Pütterich³, O. Sauter⁹, M. Sertoli⁴, G. Tardini³, D. Taylor⁴, D. Van Eester⁶, S. Sharapov⁴, M. Weiland³, JET Contributors, EUROfusion MST1 Team and AUG Team ¹Barcelona Supercomputing Center, Spain ²ICREA, Barcelona, Spain ³Max-Planck-Institut für Plasmaphysik, Garching, Germany ⁴CCFE, Culham Science Centre, Abingdon, UK ⁵Dept. of Atomic, Molecular and Nuclear Physics, Universidad de Sevilla, Sevilla, Spain ⁶Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium ⁷Institute for Plasma Science and Technology, National Research Council, Milan, Italy ⁸Dipartimento di Fisica "G. Occhialini", Università di Milano-Bicocca, Milan, Italy ⁹Swiss Plasma Center, EPFL-SPC, Switzerland

INTRODUCTION

We report on recent experiments carried out on JET and AUG tokamaks with high-Z plasma facing components to develop and investigate ICRF schemes and plasma scenarios with relevance to ITER.

Device	ICRF scheme	Plasma scenario
JET	³ He minority heating	High-performance hybrid
JET	Dual frequency ³ He minority +H minority heating	High-performance hybrid
AUG	³ He minority heating	H mode
AUG	2nd harmonic H+H minority heating	ITER baseline like
AUG	Third harmonic heating of D	H mode

³HE MINORITY HEATING ON AUG

Earlier AUG experiments with ³He minority heating: centrally strongly peaked T_i coincide with peaked x-ray emission profiles, indicating tungsten density peaking in the plasma core [Mantsinen et al., 2015, AIP Conference Proceedings 1689, 030005].

Here: study the role of radiation and

AUG Discharge 37886 (red) and 31563 (green), t = 2.25 s

³HE MINORITY HEATING ON JET

³He minority heating is an ICRF heating scheme to be used in ITER at full B_T

Here: JET 3.3T/2.2MA high-performance hybrid discharges with ³He minority heating, compared to H minority heating.

Discharges with ³He minority heating (Figs. 1-2):

- reach higher T and neutron rate $R_{\rm NT}$
- maintain a lower plasma density

due to lower core W density (Fig. 3) through ³He concentration scan of 1-9%.

Best R_{NT}, W_{DIA} , T_i and T_e obtained at low ³He concentration of \approx 2%.

ICRF modelling: stronger bulk ion heating and weaker W_{fast} with ³He minority heating \rightarrow changes to plasma transport (profiles, collisionality, impurity screening,...), leading to differences observed. JET Discharges 94667 (blue), 94671 (red) and 94674 (pink)

Figure 1 Main plasma parameters in 3.3 T/2.2 MA discharges **94671** and **94674** with ³He **minority heating** together with those in discharge **94667 with H minority heating**.

He concentration (%)

Figure 2 Neutron rate as a function of ³He

minority concentration in discharges with ³He

minority heating and in discharges with H

minority heating.

impurity peaking in T_i peaking with new discharges prepared in the same way except for prior wall conditioning with boronization in order to reduce impurity sources.

Similar peaked T_i profiles were obtained (Fig. 5) while there was no soft x-ray radiation peaking (Fig. 6).

 \rightarrow Radiation and impurity peaking do not play a major role in T_i peaking in these AUG discharges.

Figure 6 NBI and ICRF power and radiation peaking factor deduced from soft X-ray (SXR) measurements for discharges 37886 and 31563 with ³He minority heating and with and without prior wall conditioning with **boronization**, respectively.

SECOND HARMONIC HEATING OF HYDROGEN ON AUG

Figure 5 Radial T_i profile for AUG discharges 37886 and 31563 with ³He minority heating with and without prior wall-conditioning with boronization.

Our results are in line with computational multi-code work [Bilato et al., 2014, AIP Conference Proceedings 1580, 291] for ITER which suggests good ICRF absorption with 3 He concentration of ~3%.

Obtaining best performance at low ³He concentration is advantageous for ITER because of lower operational costs..

Figure 3 Tungsten concentration at $\rho = 0$, 0.3 and 0.6 in discharge 94669 with H minority heating (left) and discharge 94672 with ³He minority heating (right). Note the different vertical axes.

DUAL FREQUENCY ³HE MINORITY AND H MINORITY HEATING ON JET

Dual frequency ICRF operation tested with

Central 2nd harmonic H minority heating has been applied for the first time in AUG ITER baseline like plasmas, both alone and in combination of off-axis H minority heating, and compared with pure offaxis H minority heating (Fig. 7).

It results in higher T_e , β_N and R_{NT} as compared to other schemes studied.

It allows ICRF heating in ITER relevant plasma scenario studies on AUG at lower B_T than would be otherwise possible.

THIRD HARMONIC HEATING OF DEUTERIUM ON AUG

We have extended our earlier work with 3^{rd} harmonic heating of D NBI ions on AUG [Mantsinen et al. , EPS2016] to more robust plasmas with central ECRF heating at B_T around 2.5 T.

Controlled variations of the fast D

Figure 7 Main plasma parameters for AUG 1.8T / 1.1 MA discharge 36144 during **three different phases of ICRF heating**.

combined H and ³He heating in JET 3.3T/2.2 MA hybrid plasmas and compared with pure H and ³He heating (Fig. 4).

Dual frequency ICRF operation maximized the coupled ICRF power.

 $R_{\rm NT}$ in JET hybrid plasmas scales roughly linearly with input power \rightarrow input power is in key role in maximizing fusion performance at JET

Experiments will be expanded to D-T and pure T mixtures in the forthcoming JET campaigns.

Figure 4 Neutron rate as a function of ICRF+NBI power in discharges with different ICRF schemes

distribution have been obtained in response to variations in several physical parameters such as NBI, ICRF power, T_e , and ICRF resonance location, in line with theoretical predictions.

Figure 8 shows an example with more than two-fold increase of R_{NT} as well as lengthening of the sawtooth period due to ICRF-accelerated deuterons.

Figure 8 Plasma parameters for AUG discharge 35489 with 3rd harmonic ICRF heating of D with synergy with D NBI. Different NBI injectors were used for each ICRF phase.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.