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INTRODUCTION SHE MINORITY HEATING ON AUG
We report on recent experiments carried out on JET and AUG tokamaks with high-Z Earlier AUG experiments with 3He minority heating: centrally strongly peaked T
plasma facing components to develop and investigate ICRF schemes and plasma coincide with peaked x-ray emission profiles, indicating tungsten density peaking
scenarios with relevance to ITER. In the plasma core [Mantsinen et al., 2015, AIP Conference Proceedings 1689, 030005 ].
. AUG Discharge 37886 (red) and 31563 (green), t=2.25s
Here: study the role of radiaon and ¢
JET Dual frequency 3He minority +H minority heating High-performance hybrid discharges prepared in the same way % g{pT
o . : L . X4F
AUG 3He minority heating H mode except for prior wall conditioning with o £
AUG 2nd harmonic H+H minority heating ITER baseline like boronization In order to reduce impurity §3§— #
AUG Third harmonic heating of D H mode Sources. %25 Hfg
="F LE{% 1
JET Discharges 94667 (blue), 94671 (red) and 94674 (pink) Similar peaked T, profiles were obtained _51 s i,
SHE MINORITY HEATING ON JET fg il b o (Fig. 5) while there was no soft x-ray e,
3He minority heating is an ICRF heating :’_ radiation peaking (Fig. 6). 002 'or'#o'tc')r;ig'ésl' —08 1.0
. 3 Fuelling rate (10%electrons/s) - .. . . .
scheme to be used In ITER at full B; j}: L — Radiation and impurity peaking do not Figure 5 Radial T, profie for AUG
Here: JET 3.3T/2.2MA high-performance 8 Neonratefi0%R) < play a major role in T, peaking In these discharges 37886 and 31563 with *He
nybrid  discharges with  3He  minority 0oL 5 ] AUG discharges. VT;TS;%;}EC?E;Q VV\\IIII:E ; g:j Or\:\g'ztzt?s; POt
neating, compared to H minority heating. - o~ N 3 _, DL DISCIiErge S7860 (red)and <1900 (bue) , g |
_ _ _ _ _ _ 2 Electron temperature (keV) Wi = 4 :‘ NBI power I
Discharges with 3He minority heating (Figs. 0d- - e A S 4 - | CRE
1-2): 0_4;,__// —— — ] %’ o I IIIIIII II power
ol Electron density (10%°/m?) o 3 F l IRRRARN
i : a 1
* reach higher T and neutron rate Ry 8 . 100 L 1
« maintain a lower plasma density . . SXR radiation peaking factor
due to lower core W density (Fig. 3) o e concenraot ) — 10
through 3He concentration scan of 1-9%. 6 8 ] ¥ 12 14
Best Ry, Wpa » T, and T, obtained at low Figure 1 Main plasma parameters in 3.3 T/ 2.2 1 ’ Time (¢) * °
SHe concentration of ~2%. MA di_schaI:ges_ 94671 aﬂd 94§7h4 Vr‘]’ith “He Figure 6 NBI and ICRF power and radiation peaking factor deduced from soft X-ray (SXR)
o - - minority heating together with those in measurements for discharges 37886 and 31563 with 3He minority heating and with and without
ICRF modelling: St.ronger bqlk on heat!ng discharge 94667 with H minority heating. prior wall conditioning with boronization, respectively.
and weaker W, with SHe minority heating 1.4 — ’ UG Discharae 36144
- ; 5 ; 5 ISCharge
— _Chang_es '[_O pla_sma trans_port (profll_es, o + | ‘ ’ 2nd harmonic _ H minority Dual frequency
collisionality, impurity screening,..), leading o SECOND HARMONIC HEATING OF 71 | ;
to differences observed. 10 HYDROGEN ON AUG 61
L . . © 5| Electron density (10'/m”) |
Our results are in line with computational § s Central 2nd harmonic H minority Electron temperature (keV) |,
multi-code work [Bilato et al., 2014, AIP g heating has been applied for the first M’WWMMWWW_Q,
Conference Proceedings 1580, 291] for ITER ° | : : : time in AUG ITER baseline like | . 5
which suggests good ICRF absorption with ol 2 | 4 6 8 | olasmas, both alone and in 2, T Neutron rate (10°7s)
3He COnCentrathn Of ~3% He concentration (0/0) Comblnatlon Of Oﬁ:_aXIS H mlnorlty 1—_/%””
. Figure 2 Neutron rate as a function of 3He : : i i
3 - |
Obtaining _beSt_ performance at low “He minority concentration in discharges with *He he_atlng, _and_compa_red W.Ith pure oft | ; 25 15
concentration is advantageous for ITER minority heating and in discharges with H axis H minority heating (Fig. 7). Y et o e i B
because of lower operational costs.. minority heating. It results in higher T,, By and Ry, as Nomlizediplasmakets | e
, p-000 P03 p=080 BIPIZIG;?OI e pmes compared to other schemes studied. 3 ’
: [ 2 é i - 1
_ - ? relevant plasma scenario studies on Fuelling rate (107 Iectron$/s) 8
10} A ! AUG at lower B; than would be M‘Mm‘-s
Lo oL ! | otherwise possible. | ! | 4
< O | | 4 5 6 7
; 5_— ° 2+ - | | Time (s)
_ _ | g i Figure 7 Main plasma parameters for AUG
o f : 1l i | THIRD HARMONIC HEATING OF 1.8T / 1.1 MA discharge 36144 during three
PRI e — - a T DEUTERIUM ON AUG ditferent phases of ICRF heating.
O e A s o SN o>~ .. . M. . ... . AUG Discharge 35489
7-0 rme (&) - 70 = Tl_mﬁf(s) 5.9 2.0 We have extended our earlier work 2 NBi () | | -w l—u
. J . . l
Figure 3 Tungsten concentration at p = 0, 0.3 and 0.6 in discharge 94669 with H minority heating W'th 3" harmonic heat_lng of D NBI i ECRF MW
(left) and discharge 94672 with 3He minority heating (right). Note the different vertical axes. lons on AUG [Mantsinen et al. |, 15] '
EPS2016] to more robust plasmas 101w \cRF (MW)
3.2 T : T : ' 0.5}
DUAL FREQUENCY 3HE MINORITY AND H with central ECRF heating at By l l |
MINORITY HEATING ON JET ﬁ """"" around 2.5 T. 4_
: : o~ N T .~ T < — 1311 - 13
Dual frequency ICRF operation tested with ©2 g ; % g Controlled variations of the fast D 2™ Neutron rate,(10'%s)
combined H and 3He heating in JET 3.3T/22 MA  © b distribution have been obtained In ‘o
hybrid plasmas and compared with pure H and g W | response to variations in several L ity i
3He heating (Fig. 4). @ 5. § physical parameters such as NB_, = ' '
| o SR . | WS, o ® ICRF power, T, and ICRF 6.2 ,
Dual frequency ICRF operation maximized the - - 8:m?non.:y(ref) ! resonance location, in line with se  Eiectron density (10" ) .
coupled ICRF power. Z 20 [:15' XHQE,?VU%BH? theoretical predictions. 460!
Ryt In JET hybrid plasmas scales roughly linearly ; ; |:13HH+ H?"“_'t”°“ty*- Figure 8 shows an example with 40|/ Plasmalenergy content (kJ)
: : : . : - : ; e minority " | | |
. . . . Ime (S
maximizing fusion performance at JET SNl e et e) as well as lengthening of the  rigyre g plasma parameters for AUG discharge
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