
PNBI=25MW, GD= 3x1022 el.s-1

GNe=8x1021 el.s-1  (CNe=1%)
H98: 0.60 à 0.86
bN:  1.1 à 2.0 
Te= 1.1 x Ti
fGW: 0.82
Zeff =2.0
frad: 0.76

Core modelling and improvement of confinement

Pedestal stability, structure, first gyrokinetic analysis

Power load reduction, radiation and SOLPS-ITER benchmark for ITER

Conclusion
• JET has demonstrated for the first time that Ne-seeded plasmas are compatible with high-performance and can 

achieve higher normalized confinement and neutron rate than equivalent N-seeding plasmas.

• The decrease of electron pedestal density and rise in pedestal ion temperature is key in this improvement but 
improved core confinement also play a role via the increased ExB shearing rate, impurity content and higher ratio 
of Ti/Te.

• Reduction of heat load is observed at the strike-point with neon; Full detachment obtained with N-seeding. 

• ITER benchmark activities with SOLPS-ITER on Ne and N-seeded JET plasmas are underway [6,7].

Ne-seeded N-seeded

Fig 2: Time trace of N-seeded plasma (in red, #97125) and Ne-seeded
plasma (in blue, #96915) with about 1% of impurity concentration at the
pedestal top and D-gas (3.5x1022 el/s).

Introduction
• ITER tritium plant is being designed to deal with both nitrogen (N) and neon (Ne) [1]

but the use of N leads to the formation of tritium-containing ammonia  à time-costly high temperature regeneration 
à reduction of plant duty cycle. 

• On current devices with all-metal plasma-facing components, N generally provides the best performance with 
respect to a carbon dominated environment. [2,3,4]

• It would be beneficial for ITER to use Ne for divertor radiation
• New experiments at JET with a higher input power (30-33MW) have finally yielded a Ne-seeded scenario which 

behaves similarly to the high-performance seeded H-mode previously only achievable with N impurity.

Experimental details, performance of neon and nitrogen-seeded plasmas 
• Stationary Type I ELMy H-modes have been obtained with Ip=2.5MA, BT=2.7T, PRF=5MW, with high triangularity 

(d=0.4), with the same ITER-like divertor (VV) configuration with both inner and outer strike points on the vertical 
divertor target [2].
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High Performance ITER-baseline discharges in deuterium with 
nitrogen and neon-seeding in the JET-ILW

unseeded Ne-seeded

Fig.1: Time-trace of improved Ne-seeded plasma (96133,red) 
GNe=8x1021 el.s-1 versus unseeded plasma (96139, blue) with same 
input power and D-gas rate. 

Fig. 3: Time trace of Ne-seeded plasma at highest radiative fraction with 
small/no ELM.

Ne-seeded

PNBI=28MW, GD= 3.5x1022 el.s-1

GNe=1.56x1022 el.s-1  (CNe=1%)
GN=4.8x1022 el.s-1 (CN=1%)

H98 bN Te= fGW Zeff frad Rnt  
(x1016 n.s-1)
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PNBI=28MW, GD= 3.5x1022 el.s-1

GNe=2.2x1022 el.s-1

H98: 0.9 (corrected for fast particles)
bN:   2.3 
Te= 1.2 x Ti
fGW: 0.68
Zeff =2.7
frad: 0.80
Rnt= 1.6x1016 n.s-1
Small/no elms

Fig 5: Time trace of Be1+ intensity in region close to the outer
strike point for discharge with increasing Ne gas rate from
bottom unseeded to top for the highest seeding of 2.2x1022

el.s-1

Fig 4: Series of plasma discharges in D with Ne
(filled blue) and N (filled green) seeded and
unseeded (open black) plasmas. Each symbol
represent a discharge. a) averaged neutron rate b)
normalized confinement c) normalized pressure

(a) (b)

(c)

Fig 6: Time trace of Be1+ intensity in region close to the outer
strike point for discharge with increasing N gas rate from
bottom 3.6x1022 el.s-1 to top for the highest seeding of
8.3x1022 el.s-1

Fig 6: pre-ELM pedestal values of Ne and N-seeded plasmas versus the ratio Pdiv/Pmain: from left to right 1) total pedestal pressure, 2) ion pedestal temperature, 3)electron
pedestal density and 4) electron pedestal temperature, for unseeded (open black symbol), N (filled green) and Ne (filled blue) seeded plasmas.

(1) (2) (3) (4)

• Unexpectedly, over the range of applied impurity-seeding rate,
the neon-seeded plasmas have the highest neutron rates, H98
and bN values and energy confinement time (Fig 4), in
comparison to N-seeded plasmas.

• The ELMs are very different between Ne and N-seeded
plasmas (Fig. 5 and 6) as the impurity seeding rate increases.

• At the highest Ne-seeding rate of 2.2x1022 el.s-1, stationary
plasmas are obtained with small ELMs/no ELM regime and
impressive plasma performance, see Fig. 3.

• Pedestal behaviour is different for Ne and N-seeded
plasmas:

- Similar total pedestal pressure can be maintained (Fig.6)
- Ne-seeded plasmas have a higher pedestal Ti and lower

pedestal electron density than N-seeded plasmas, but
similar pedestal Te. (Fig 6)

• QuaLiKiz simulation with j, Te, Ti , ne, ni are
predicted; impurity density and rotation are
imposed. Boundary conditions taken at
rho=0.85

• Both seeded and unseeded discharges, (from
Fig1) are well reproduced as well as Rnt.

• ITG dominated at lower kqrs (<1), while ETG
weakly unstable for kqrs≳ 3.

• Components leading to the origin of the
improvement are identified by starting from the
unseeded simulation and adding step-by-step
• Rotation profile from Ne-seeded plasma
• Ne impurity content
• The pedestal electron density at rho=0.85
• Pedestal electron and ion temperature

Fig. 7:Results from QualiKiz modelling with step-by-step change from unseeded discharge to Ne-seeded discharge. Unseeded 
discharge (#96139, in red), with rotation profile from #96133 (in dark green), with impurity composition of #96133 (in blue), with the 
electron density boundary value of #96133 (in purple), with the electron and ion temperature boundary of #96133 (in light green) [5].

• ExB shear, impurity content ad high ratio Ti/Te, each plays a role in improving the core confinement and neutron
rate but together comparable to the role of the pedestal. Similar simulations with N-seeding are on-going.

Fig. 8: normalised pressure gradient for Ne-seeded plasmas (left) and j-a stability diagram 
(right). Left graph. Legends show the Ne-gas rate and value of Pdiv/Pmain.

Fig. 9: normalised pressure gradient for N (left) and j-a stability diagram (right).

• For both Ne and N-seeded plasmas, an increase in pedestal width is observed (mostly due to the Te width)
• For N, the OP is close to the Peeling-Ballooning boundary and in the ballooning region of the j-a diagram.
• For Ne, amax decreases with increasing Ne-gas rate. For moderate Ne-gas rate (1.6x1022 el.s-1), OP is within 20%

of the PB stability boundary, but above this Ne-gas rate, the OP moves further away from the PB boundary.

Fig.10: Power flux at outer target determined from Langmuir probes for increasing impurity seeding in Neon (left) 
and N (right). Seeding gas-rate and value of ratio Pdiv/Pmain indicated on the graph. .

Fig 11: SOLPS-ITER separatrix density with increased impurity concentration at separatrix (left) for Ne and 
N-seeded plasmas. (Right) Measured separatrix density with increased ratio Pdiv/Pmain proxy for increased 
radiation of Ne (blue) and N(green) seeded plasmas.  

Fig 12: Measured vertical (left) and horizontal (right) divertor bolometry channels 
for N (top) and Ne (bottom) with contribution from core removed. Note the 
horizontal channel 35 became saturated for N (highlighted with black blob).

Fig 13: SOLPS-ITER vertical (left) and horizontal (right) divertor 
bolometry channels simulated data for N (top) and Ne (bottom)

Fig 14: Measured saturation current at outer target for N 
(left) and Ne-seeded (right|) discharges (filled symbol-
data, full line fit) and best match with SOLPS-ITER run 
(dashed line). Same color as used in Fig 12. and  13. 

• N-seeding can lead to fully detached plasmas in inter-ELM period, whereas Ne-seeding only reduce the power
load in the SP region so far (Fig10).

• N-radiation is more localised in the separatrix region than Ne (Fig.12)
• Benchmark with SOLPS-ITER of N and Ne-seeded plasmas on-going but already fairly good reproduction of

radiation pattern, and saturation current (Fig 13 and 14) [6,7].
• Separatrix density decreases for both Ne and N as impurity content is increased in experiment, also observed in

SOLPS-ITER (Fig. 11)
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