Comparison of Particle Transport and Confinement Properties between the ICRH and NBI Heated Dimensionless Identity Plasmas on JET

T. Tala1, A. Salmin1, E.R. Solano2, I.S. Carvalho3, J. Citrini4, A. Chomiczewska5, E. Delabie6, F. Eriksson7, J. Ferreira7, E. Fransson8, L. Horvath9, P. Jacquet10, D. King11, A. Kirjasuo11, S. Leerink12, E. Lerche12, C. Maggi12, P. Mantica12, A. Mariani12, M. Marin2, M. Maslov1, S. Menmuir3, R.B. Morales4, V. Naullin5, M.F.F. Nave6, H. Nordman7, C. Perez von Thun7, P.A. Scheider12, M. Sertoli8, K. Tanaka9 and JET contributors*

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

1VTT, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
2CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK
3DIFFER, Eindhoven, Netherlands
4Chalmers University of Technology, Göteborg 41296, Sweden
5JPP-ERM/KMS, TEC Partner, Brussels, Belgium
6Department of Physics "G. Occhialini", University of Milano-Bicocca, Milano, Italy
7Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, 85748 Garching, Germany
8National Institute for Fusion Science, Toki, Gifu, Japan

*See the author list of Overview of JET results for optimizing ITER operation by J. Mailloux et al to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021).

INTRODUCTION

- Particle transport and fuelling are one of the major open issues in understanding the ITER physics [1].
- Core density profile peaking and particle transport have been recently extensively studied on several tokamaks [1,2,3].
- Earlier database studies in JET, AUG, C-Mod etc showed that density peaking scales with several plasma parameters, the most dominant ones being collisionality, Greenwald fraction and NBI fuelling [4,5,6].
- While the database studies suggested the dominant role played by the collisionality in affecting density peaking, other particle transport analyses in JET emphasized the importance of the particle source [7,8,9,10].
- What complicates the analysis is that Ti/Te and NBI source are strongly correlated, and at the same time have opposite effects on the density peaking.
- Target to quantify the role of NBI fuelling in contributing to density peaking in JET by executing identity discharges between the ICRH and NBI heated plasmas.
- Both the ICRH and NBI discharges are complemented with gas puff modulation so that we can extract the perturbative particle transport coefficients for each discharge.
- Study how the different heating systems and their effects in the plasma affect plasma confinement, MHD, impurities, radiation, pedestal, ELMs and the gas puff modulation.

NBI and ICRH Identity Plasma in JET H-MODE CONDITIONS

<table>
<thead>
<tr>
<th>Pulse</th>
<th>ICRH (MW)</th>
<th>NBI (MW)</th>
<th>(n_T=0.93)</th>
<th>(n_T\approx 0.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-mode</td>
<td>7.9</td>
<td>0</td>
<td>7.9</td>
<td>0</td>
</tr>
<tr>
<td>L-mode</td>
<td>0</td>
<td>8.0</td>
<td>0</td>
<td>8.0</td>
</tr>
<tr>
<td>R/L</td>
<td>75</td>
<td>40</td>
<td>75</td>
<td>40</td>
</tr>
<tr>
<td>(\tau_B)</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>(\tau_P)</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>(\beta_n)</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>(n_e)</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>(\rho_n)</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>(\rho_P)</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>(\rho_T)</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>(\rho_B)</td>
<td>10.10</td>
<td>10.10</td>
<td>10.10</td>
<td>10.10</td>
</tr>
</tbody>
</table>

- 15s long H-mode plasmas with 8MW of ICRH power achieved, resulting in JET record high injected ICRH energy 108MJ.
- The dimensionless profiles of \(\rho_n, \rho_P, \rho_T, \beta_n, \beta_P\) and \(\tau_B/\tau_P=1\) were matched within 5% difference except in the central part of the plasma (\(\rho_n<0.3\)).
- Factor of 2 more peaked for the NBI discharge than for the ICRH pulse – \(R/L_r\) averaged over \(\rho_n<0.4-0.8\) is for the NBI shot \(R/L_r=0.93\) and the ICRH shot \(R/L_r=0.45\).
- The main differences between the discharges are the toroidal rotation (10km/s counter-\(\nu\)p in ICRH pulse and 110km/s co-\(\nu\)p for the NBI pulse), confinement, power deposition profiles, fast ion content and profiles (shown also in [6]), ELM characteristics, radiation and heavy impurity concentration.
- Total integrated power (ICRH) to electrons is 3.8MW and ions 4.1MW and the 4.0MW and 3.9MW (NBI), respectively. Explains why \(\beta_n/\beta_P\) ratio is very close to 1.
- The Berdineum density is 20% higher for the NBI discharge in the core region at 0.4-\(\rho_n\tr{tor}<0.8\).
- Large difference in W density between the pulses, the ICRH pulse having a factor of 6 higher \(\rho_w\).
- The Nickel density, representing the intermediate charge of plasma impurities, is a factor of 1.5 higher for the NBI pulses than for the ICRH one.
- However, yield similar Zeff profile in the confinement region at 0.4-\(\rho_n\tr{tor}<0.8\).
- Total radiation of approximately 4MW for the ICRH shot and 2MW for the NBI shot.
- The phase profile (top right) is flatter in the case of ICRH, giving rise to higher perturbative diffusion.
- Although these profiles represent the perturbative transport coefficients, this suggests that the steady-state particle transport could also be different.
- In order to verify whether the power balance particle transport coefficients are the same or not, modelling is needed to obtain the experimental-determined perturbative transport coefficients and the power balance ones. This is left for future work.

SUMMARY AND CONCLUSIONS

- The NBI fuelled discharge has a factor of 2 higher density peaking (\(R/L_r=0.93\) for the NBI shot and \(R/L_r=0.45\) for the ICRH shot), yielding similar plasma parameters and performance in the confinement region (0.3-\(\rho_n<0.8\)).
- The differences between the ICRH and NBI plasmas are the toroidal rotation, plasma fast ion density and energy and heavy impurity densities of Tungsten and Nickel. In order to clarify whether particle transport is the same, modelling is needed.
- This result 2 is valid at 8MW of heating power level. These are low power H-modes studied on several tokamaks [1,2,3].
- To quantify the role of NBI fuelling in contributing to density peaking in JET by executing identity discharges between the ICRH and NBI heated plasmas.
- Both the ICRH and NBI discharges are complemented with gas puff modulation so that we can extract the perturbative particle transport coefficients for each discharge.
- Study how the different heating systems and their effects in the plasma affect plasma confinement, MHD, impurities, radiation, pedestal, ELMs and the gas puff modulation.

\section{EXPERIMENTAL COMPARISON BETWEEN THE NBI AND ICRH IDENTITY PULSES}

\begin{itemize}
 \item The main differences between the discharges are the toroidal rotation (10km/s counter-\(\nu\)p in ICRH pulse and 110km/s co-\(\nu\)p for the NBI pulse), confinement, power deposition profiles, fast ion content and profiles (shown also in [6]), ELM characteristics, radiation and heavy impurity concentration.
 \item Total integrated power (ICRH) to electrons is 3.8MW and ions 4.1MW and the 4.0MW and 3.9MW (NBI), respectively. Explains why \(\beta_n/\beta_P\) ratio is very close to 1.
 \item The Berdineum density is 20% higher for the NBI discharge in the core region at 0.4-\(\rho_n\tr{tor}<0.8\).
 \item Large difference in W density between the pulses, the ICRH pulse having a factor of 6 higher \(\rho_w\).
 \item The Nickel density, representing the intermediate charge of plasma impurities, is a factor of 1.5 higher for the NBI pulses than for the ICRH one.
 \item However, yield similar Zeff profile in the confinement region at 0.4-\(\rho_n\tr{tor}<0.8\).
 \item Total radiation of approximately 4MW for the ICRH shot and 2MW for the NBI shot.
 \item The phase profile (top right) is flatter in the case of ICRH, giving rise to higher perturbative diffusion.
 \item Although these profiles represent the perturbative transport coefficients, this suggests that the steady-state particle transport could also be different.
 \item In order to verify whether the power balance particle transport coefficients are the same or not, modelling is needed to obtain the experimental-determined perturbative transport coefficients and the power balance ones. This is left for future work.
\end{itemize}