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• Beta-induced ion temperature gradient (BTG) modes are characterized by… 
1. High 𝛽𝑖 with a significant ∇𝑇𝑖 (often related to an Internal Transport Barrier)
2. Localization near a rational 𝑞-surface with a low magnetic shear
3. Strong thermal ion dependence, scaling with the ion drift frequency
4. Coupling among Alfvén, acoustic, and drift waves

• In [15], these are consistent with the analytical theory of BTG modes [16] as well as 
linear gyrokinetic simulations with the Gyrokinetic Toroidal Code (GTC) [17]

• A good example is JPN 95649, a recent D plasma dedicated to scenario development 
for the study of EPs and EP modes in DT [18,19] (Fig 5)

• Investigations of the relation between BTGs and the neutron “roll-over” are underway

Identification of sub-TAE electromagnetic modes as BTGs [15]

FIG. 5. (a) Plasma parameters for JPN 95649. Unstable sub-TAE BTG modes were observed during the shaded 
time interval. (b) Spectrogram with toroidal mode number analysis.

Summary + main takeaways
• Almost 7500 stable Alfvén Eigenmodes (AEs) were measured in almost 800 plasma 

discharges during the 2019-2020 JET deuterium campaign
• A statistical analysis shows continuum and radiative damping increase with edge 

safety factor, edge magnetic shear, and when including non-ideal effects 
• A novel measurement of marginal stability is found for an edge-localized Ellipticity-

induced AE (EAE) in a plasma with 25 MW of ICRH and NBI auxiliary heating
• Unstable electromagnetic modes with frequencies below Toroidicity-induced AEs 

(i.e. sub-TAE) are identified as beta-induced ion temperature gradient (BTG) modes
• MHD, kinetic, and gyrokinetic simulations agree well with experiment
• Similar studies are planned for the recent hydrogen and ongoing tritium campaigns, 

in preparation for the upcoming JET DT campaign

FIG. 2. (a) Plasma parameters for JPN 94703. A stable EAE was tracked during the shaded time interval. 
(b) Fitted profiles for 𝑡 = 8.5 s. 𝜓𝑁 is the normalized poloidal flux.
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Background: the Alfvén Eigenmode Active Diagnostic (AEAD)

• The interaction of AEs and energetic particles (EPs) will determine the success of 
future tokamaks, through EP-driven AEs and associated AE-induced EP transport

• The JET AEAD comprises two sets of four toroidally spaced, in-vessel antennas 
which actively excite stable AEs [1,2]

• Six amplifiers independently power and phase six (of the eight) antennas [3] with 
frequencies 25-250 kHz, toroidal mode numbers |𝑛| < 20, and |𝛿𝐵/𝐵| ~ 10-3

• Fast magnetic probes measure stable AE frequencies 𝜔0 = 2𝜋𝑓0, net damping rates 
𝛾 < 0, and toroidal mode numbers 𝑛

• The AEAD may be required to assess alpha drive in the upcoming JET DT campaign
if the alpha population is insufficient to destabilize AEs

Database studies: damping rate and operational scenarios

• A statistical analysis was performed for ~7500 stable AEs measured in ~800 plasmas
• Normalized damping rates are well-correlated with…

• Edge safety factor 𝑞95→ increased continuum damping [4]
• Edge magnetic shear 𝑠95→ increased radiative damping [5]

• Non-ideal parameter 𝜆 = 𝑞95 𝑠95 𝑇𝑒0/𝐵0 [6,7]→ radiative damping (Fig 1a)

• Both stable AE observations and their damping rates decrease with |𝑛| (Fig 1b)
→More localized damping due to decreasing mode width ∝ 1/|𝑛|
→ Fast ion drive increases with 𝑛 × (fast ion radial pressure gradient)

• The efficiency of active antenna excitation is reduced in X-point vs limiter magnetic 
configuration, likely due to increased edge shear [5]

• The intersection with an H-mode database [8] shows no stable AE excitations during 
H-mode (p-value = 0.076) → AEAD is only successful during L-mode

Novel EAE stability measurement at high auxiliary heating

• Flattop: 𝐵0 = 3.7 T, 𝐼𝑃 = 2.5 MA, 𝑛𝑒0 ~ 8e19 m-3, 𝑇
𝑒0
~ 5 keV (Fig 2a)

• 3-ion heating [9,10]:  𝑃𝑁𝐵𝐼 ~ 19-21 MW,   𝑃𝐼𝐶𝑅𝐻 ~ 4.4 MW,   𝑛𝐻𝑒3/𝑛𝑒 ~ 23%
• 𝑞(pressure-constrained), 𝑛𝑒,𝑇𝑒(Thomson Scattering), 𝑓𝑟𝑜𝑡(charge exchange) (Fig 2b)

Damping, 𝛾/𝜔0 (%) 𝑛 = 5, 𝑓0 = 236.4 kHz

Continuum -0.116

Radiative 0.000

Electron collisional -0.010

Electron Landau -0.198

Ion Landau ~0.000

NBI fast ion -0.017

Total -0.341

FIG. 1. (a) Normalized damping rate vs non-ideal parameter. (b) Number of stable AE observations (logarithmic) vs 
toroidal mode number (|𝑛| < 8) and normalized damping rate (|𝛥𝛾/𝜔0| < 0.5%).
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TABLE 1. Normalized damping rate (%) calculated by NOVA-K. FIG. 4. Continua (thin lines) and poloidal mode 
structure from NOVA-K for the same edge-localized n = 5 EAE (lab frame). 𝜓𝑁 is the normalized poloidal flux.

• Several AEs modeled (𝑛 = 3-6), but best agreement is found with 𝑛 = 5 (Table 1)
• Localization is consistent with improved AEAD coupling with edge modes [5] (Fig 4)
• Dominant contributions are electron Landau and continuum damping
• Negligible damping from NBI fast ions <100 keV is due to injection velocities < 𝑣𝐴/3
• These are (expectedly) different from the damping mechanisms of some core-

localized TAEs studied in JET [14], dominated by ion Landau and radiative damping

• Marginally stable AE is tracked in real time with odd AEAD phasing (Fig 3a)
• Frequency is 𝑓0 ~ 235-250 kHz, toroidal mode number is 𝑛 ~ 5 (probe-dependent)
• Normalized damping rate is low: −𝛾/𝜔0 ~ 0.25% → 0.6 kHz (Fig 3b)

FIG. 3. (a) Spectrogram with toroidal mode number analysis. (b) Magnetic response amplitude, AEAD (dashed) 
and stable AE resonant frequencies (circles), and normalized damping rates.
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Simulations with kinetic-MHD code NOVA-K [11-13]
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