High- β_N Experiments and Corresponding MHD Activities in the HL-2A Tokamak

W. Chen¹, L. M. Yu¹, M. Xu¹, X. Q. Ji¹, Z. B. Shi¹, X. X. He¹, Z. J. Li¹, Y. G. Li¹, T. B.Wang¹, M. Jiang¹, J. Wen¹, S. B. Gong¹, Z. C. Yang¹, J. Li², W. L. Zhong¹, A. P. Sun¹, J. Y. Cao¹, X. Y. Bai¹, J. Q. Li¹, X. T. Ding¹, J. Q. Dong¹, Q. W. Yang¹, Yi. Liu¹, L.W. Yan¹, and X. R. Duan¹ ¹Southwestern Institute of Physics, P.O. Box 432 Chengdu 610041, China ²School of Physics, Dalian University of Technology, Dalian 116024, China chenw@swip.ac.cn

ABSTRACT

• High- β_N experiments have been carried out on HL-2A in recent several years. The high- β_N is realized by double transport barriers (DTBs) under the circumstance of hybrid scenarios. A stationary high- β_N (>2) scenario is obtained by the pure NBI heating. The transient high performance is also achieved, and corresponding β_N >3, ne/ne_G~0.6, H₉₈~1.5, f_{bs}~30, q₉₅~4.0

INTM: m/n=3/2, f~25kHz; β_N deceasing during NTM oscillation.

■HCM induced by the LHCD, strong electrostatic fluctuation components, k_{θ} ~1.4 cm⁻¹; HCM may regulates particle and energy transport.

ID: 1111

2) Low frequency n=1 global mode

and G~0.4. In high- β_N plasmas, there are abundant MHD instabilities, including low-frequency global MHD oscillation with n=1 and high-frequency coherent mode (HCM) in the edge, and neoclassical tearing mode (NTM) and Alfvenic modes in the core. In some high- β_N discharges, it is observed that the NTMs with m/n=3/2 limit the growth of the plasma energy and decrease β_N . The low-n global MHD oscillation consistent with the coupling of destabilized internal (m/n=1/1) and external (m/n=3/1 or 4/1) modes, and it plays a crucial role in the triggering onset of ELMs. Achieving high- β_N on HL-2A suggests the core-edge interplay is key important for the plasma confinement enhancement mechanism. The experiments of enhancing- β_N can contribute to the future plasma operation, such as ITER.

High- β_N realization on HL-2A

High- β_N realization by double transport barriers (DTBs) under circumstance of hybrid scenarios on HL-2A.

Low frequency global mode:

Coupling of destabilized internal and external modes with m/n=1/1 and m/n=3/1, respectively.

The mode plays a crucial role in the triggering onset of ELMs.

3) EP driven instabilities

Alfvenic modes&energetic-ion redistribution: an important influence on the pedestal evolution.

Discussion and conclusion

A stationary high- β_N scenario ($\beta_N > 2$, t~15 τ_E) is obtained on HL-2A. The transient high performance is also realized, and corresponding $\beta_N > 3$, ne/ne_G~0.6, H₉₈~1.5, f_{bs}~30, q₉₅~4.0 and G~0.4. In high- β_N H-mode plasmas, there are many kind MHD instabilities, including global n=1 MHD oscillation, HCM, NTM and Alfvenic modes. In some high- β_N discharges, the NTMs degrade the plasma confinement and decrease β_N . The low-n global MHD mode plays a crucial role in the triggering onset of ELMs. The Alfvenic modes and energetic-ion transport may affect the pedestal evolution.

Stationary high- β_N scenario on HL-2A

 $\beta_N > 3$, ne/ne_G~0.6, H₉₈~1.5, f_{bs}~30, q₉₅~4.0 and G~0.4 at t~590 ms.

MHD stabilities in high- β_N plasmas

Some crucial physics problems need to be resolved on HL-2A, namely how control MHD instabilities and sustain transport barrier to achieve higher steady-state β_{N} . The study of improving- β_{N} , by expanding ITB foot outward, controlling MHD activities and enhancing synergic effects between ITB and ETB, would be important for the future plasma operation, such as ITER and CFETR.