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ABSTRACT PLASMA RESPONSE MODEL

eControling large edge localized modes (ELMs) is critical for tokamaks  Linear response model

Single fluid+resistive MHD+plasma toroidal rotation+toroidal geometry
i(Qpyp +1Q)E=v+(E-VQ)RV
ip(Quyp +1Q)V=—Vp+jxB+Ixb

operating in H-mode, due to potentially severe consequences on material
damages caused by ELM bursts in future large scale devices such as ITER.

Resonant magnetic perturbation (RMP) has been extensively applied to ~p[20VZxv+(v-VQ)R'V§]

mitigate or suppress ELMs. In this work, we report two new recent results — pic kv, [[VHE V)V, ]

on the effect of the n=1 (n is the toroidal mode number) RMP fields on i(Qpyp +1Q2)b =V x(vxB)+(b-VQ)R*Vp-Vx(nj) j=Vxb
ELMs and the associated plasma transport. One is the experimental result i(Qpyp +1Q) p=—v-VP-TPV-v

on the HL-2A tokamak, where large type-1 ELMs were for the first time on Equation for RMP coils:  Equation in vaccum region:

Vxb=j. Vxb=0, V-b=0
Quasi-linear plasma response model
n#0 MHD equations coupled to n=0 toroidal momentum balance equation
with computational results quantitatively agreeing with experiments in a—L=D(L)+T AT 4T 4T

6 { NTV JXB REY source
ASDEX Upgrade. Assume torque balance (steady state flow) before applying RMP

this device suppressed by the applied n=1 RMP. The other is the toroidal
modeling study on the plasma core flow damping by the applied n=1 RMP,

RMP ON HL-2A =) Change of momentum obeys
. . . . OAL
The in-vessel coil with smal coil 2 7=D(AL)+TNTV+TJXB+TREY

scale of 450 X 260mm?2 anc
toroidal mode number of 1

\ The MARS-Q is used to solve the above equations as an initial value problem.
MODELING RESULTS: LINEAR RESPONSE
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ELM SUPPRESSION ON HL-2A BY THE APPLIED RMP
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Strong amplification of non-resonant components: ~10
Resonant harmounics reduced by 1-2 orders of magnitude at rational surfaces
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eThe DBS channels show enhanced
broadband fluctuations (k ; =4.6-
6.8 cm-1) along with the ELM

. . Dominant NTV torquep in the plasma core
Large internal kink response

region (+ a small region near edge).

G RESULTS: QUASI-LINEAR RESPONSE
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Time evolution of the E X B flow and density fluctuation near p = 0.94 CONCLUSION
*The flow and fluctuation are negatively correlated eThe stochastic boundaries by simple n=1 RMP coils are compatible with H-
*The ELM crash-recovery cycle (e.g. 1155 to 1157.5 ms) is clockwise, which mode and may be attractive for ELM control with its simple coil structure
means the turbulence leads flow in next-step fusion tokamak.

*The ELM suppression half cycle (form 1220 to 1250 ms) is anti-clockwise, = e|nternal kink response may play important role in plasma core flow
which indicates the flow leads turbulence damping in high-beta hybrid scenarios in future devices.



