Abstract

- A transition from an interchange mode to a non-resonant mode is found in the nonlinear MHD simulation for an LHD plasma with net toroidal current.
- This transition occurs when the magnetic shear is weak and the rotational transform is close to unity in the core region.
- In this transition, the mode number of the dominant Fourier component is reduced.
- In the case where the difference in the kinetic energy between the largest two components is small, the \((m,n)=(1,1)\) component can be dominant, which qualitatively agrees with the LHD experiment.

Background

- Observation of partial collapse in LHD experiments
 - The net toroidal current is increased and reaches a certain value, a partial collapse is observed.
 - The partial collapses are ALWAYS caused by \((m,n)=(1,1)\) mode.

Theory for pressure driven modes:
The linear growth rate is larger for higher mode numbers for pressure driven modes.

Numerical Method

- 3D equilibrium calculation: HINT code
 - The HINT code (Y. Suzuki et al., NF (2006)) calculates 3D equilibria without any assumption of the existence of nested flux surfaces by iterating 2 steps.

- 3D stability analysis: MIPS code
 - The MIPS code (Todo et al., PFR2010) solves the full MHD equations. The 4th order finite difference and 4th order Runge-Kutta method are employed.

- Simulation conditions
 - Magnetic configuration: LHD, \(\gamma_p = 1.1738\), \(R_{\text{pp}} = 3.6m\) (same as the above experiment)
 - Equilibrium pressure profile: \(P_0 = P_1(1 - 0.05s^2 - 0.32s^4)\)
 - Equilibrium parameters:
 - \(S = 5.0 \times 10^7\)
 - \(\gamma = 2.5 \times 10^5\)
 - Equilibria with 2 kinds of net current
 - Without net toroidal current case (reference):
 - \(l = 0\)
 - \(\beta_0 = 3.1\%\) (Higher than experiment)
 - With net toroidal current case
 - \(l = 0.5\%\) for \(B_0 = 3T\)

Dynamics of LHD plasma with net toroidal current

- Close dominant components case
 - (1st choice of initial random numbers) : a transition to \((1,1)\) mode
 - At \(t=450A\) (linear phase): The \(m=2\) and \(n=3\) components have the largest Ek. \(E(k=2) / E(k=3) = 1.12\) (very close)
 - At \(t=500A\) (early nonlinear phase): The \(3,3\) and \(2,2\) are localized at the resonant surface.
 - At \(t=700A\) (further nonlinear phase): The non-resonant \((1,1)\) becomes dominant at low shear region through the nonlinear coupling.

- Spaced dominant components case
 - (2nd choice of initial random numbers) : a transition to \((2,2)\) mode
 - At \(t=450A\) (linear phase): The \(n=3\) component is clearly dominant. In Ek, \(E(k=n3)/E(k=n2) = 1.82\) (spaced)
 - At \(t=500A\) (early nonlinear phase): The \(3,3\) is localized at the resonant surface.
 - At \(t=700A\) (further nonlinear phase): The non-resonant \((2,2)\) becomes dominant at low shear region.

Dynamics of LHD plasma without net toroidal current

- Monotonic rotational transform with high shear
 - At \(t=520A\) (early nonlinear phase): \((2,2)\) component is localized at the resonant surface.
 - At \(t=700A\) (further nonlinear phase): Many side bands appear and make the pressure structure complicated.

Concluding Remarks

- A transition from the interchange mode resonant the \(\pm 2m=1\) surface to a non-resonant mode in the nonlinear phase is obtained.
- This transition occurs in the equilibrium where the shear is weak and the rotational transform is close to unity.
- The mode number of the dominant component after the transition depends on the relation of the two dominant components in the linear phase.
- In the close dominant components case, the \((1,1)\) component becomes dominant, which is considered one of the candidates of the \((1,1)\) collapse observed in the experiments.
- In the spaced dominant components case, the \((2,2)\) component becomes dominant.
- It is necessary to introduce additional physics such as background global flow and kinetic ion effects for the investigation of the mechanism for the robust \((1,1)\) component observation in the LHD experiments.

K. Ichiguchi1,2, Y. Suzuki1,2, Y. Todo1, S. Sakakibara1,2, K. Ida1,2, Y. Takemura1,2, M. Sat1, S. Ohdachi1, Y. Narushima1,2, L. Sugiyama3 and B. A. Carreras4

NIFS(Japan)1, SOKENDAI(Japan)2, MIT(USA)3, BACV Sol. Inc.(USA)4

ichiguchi.katsuji@nifs.ac.jp