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Verification Benchmark Comparisons with M3D-C1 Are Invaluable Current Quench And Runaway Electrons Pose Bigger Challenge

28 iy @ SPI thermal quench simulations well in hand
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| / 08 @ current quench and runaway electron simulations are more challenging
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good agreement in test of marker particle model for SPI fragments

NIMROD Dispersive Shell Pellet Injectlon Sims Explain Experimental™ Trends

THollmann, PRL 122 (2019)

comparison of thermal quench metrics : total current(l,), thermal energy(E:n), ionized electron count(AV,), radiated
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(a) NIMRODm;imulation
@ single upper injector, v=200m/s, d¢»=0.10, visc=250m /s

(b) DIII-D experiment
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Runaway Electron Currents From CQL3D-NIMROD Simulations
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core temperature maintained throughout early phase (t=| ,1.0])

@ loose coupling does not feed back RE's into NIMROD

o future work

ISummary and Future Work

@ verification benchmark comparisons with M3D-C1 are invaluable

peak radiation associated with core collapse (t=[1.235 -|)

impurities mix into core after rapid thermal collapse of core (t=[1.335,1.475,1.8375]ms)

current spike (t7**°=1.510ms) occurs after thermal quench

Surface of Section Surface of Section

Magnetic Energy n=[1,2,3,4]

@ NIMROD simulations reproduce and explain many experimental trends

@ D2 impurity scan, dominant role of n=1, DSP RE trends
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@ parameter scans reveal numeric sensitivity landscape

Joules

00 02 04 06 038

@ SPI thermal quench simulations are well in hand
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more challenging current quench and runaway electron simulations under way
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toroidal energies dominated by n=1,2 correspond to radiation peak and current spike
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@ continue more detailed validation comparisons with experiment

a extend simulations to ITER predictions
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t=1.15ms corresponds to first n=1 peak, retains core flux surfaces
post thermal quench (t=1.335) stochastic fields

late after thermal quench flux surfaces heal - core and (2,1) islands




