Simulations and Validation of Disruption Mitigation

US-DOE DE-SC0018109, DE-SC0016452, DE-FG02-95ER54309, DE-FC02-04ER54698, and DE-SC0016452 and GA ITER Contract IO/19/CT/4300002130

Charlson C. Kim - SLS2 Consulting, San Diego USA {email : kimcc@fusion.gat.com} Brendan C. Lyons, Yueqiang Liu, Joseph T. McClenaghan, Paul B. Parks, Lang L. Lao - General Atomics, San Diego USA Valerie A. Izzo - Fiat Lux, San Diego USA, Robert W. Harvey, Yuri V. Petrov - CompX, Oceanside USA Michael Lehnen, Alberto Loarte - ITER, Saint-Paul-lez-Durance France & the NIMROD Team

Current Quench And Runaway Electrons Pose Bigger Challenge

- SPI thermal quench simulations well in hand
- current quench and runaway electron simulations are more challenging
- current quench and runaway electrons involve two extremes
 - cold dirty plasma and relativistic electrons
- several hybrid approaches combining kinetic and fluid models underway
 MARS-F

NIMROD Dispersive Shell Pellet Injection Sims Explain Experimental[†] Trends

- M3D-C1 + fluid RE, M3D-C1 + KORC
- NIMROD RE tracers, NIMROD hybrid kinetic RE
- NIMROD+CQL3D

• additional work exists outside cohort of collaborators

• good agreement in impurity/ionization models demonstrated with stationary, axisymmetric, on-axis source^a

- benchmarks extended to two more cases : SPI in (a) 2D ITER L-mode and (b) 3D DIII-D (160606^b)
- good agreement in test of marker particle model for SPI fragments
- comparison of thermal quench metrics : total current(I_p), thermal energy(E_{th}), ionized electron count(ΔN_e), radiated power($P_{rad}+P_{ion}$), Ohmic power(P_{ohm})
- verification comparisons have also caught bugs and inconsistencies very useful exercise!
- high confidence in implementation SPI model
- ^aB. Lyons PPCF 2019
- ^bShiraki PoP 2016

- decreasing viscosity accelerates dynamics earlier t_{rad}^{peak}, au_{TQ} , t_{I}^{spike}
 - larger P_{rad}^{peak} due to stronger linear response (2,1),(3,2)
 - earlier nonlinear saturation but not necessarily larger amplitude

viscosity	${ m d}\phi/2\pi$	t_{rad}^{peak}	$ au_{TQ}$	t^{spike}_{I}	$P_{rad}^{peak}(GW)$	E_{rad}/E_{th}	assim.
$500 \text{m}^2/\text{s}$	0.10	1.417ms	1.478ms	1.728ms	0.50	40%	0.42
$250 \text{m}^2/\text{s}$	0.10	1.224ms	1.268ms	1.510ms	1.46	58%	0.66
100m ² /s	0.10	1.180ms	1.227ms	1.390ms	0.93	45%	0.61
$500 \text{m}^2/\text{s}$	0.05	1.393ms	1.451ms	1.804ms	0.55	45%	0.34
$250 \text{m}^2/\text{s}$	0.05	1.320ms	1.379ms	1.680ms	0.64	47%	0.38
100m ² /s	0.05	1.245ms	1.316ms	1.670ms	0.64	44%	0.41

radiation peak (t_{rad}^{peak}) , thermal quench time (τ_{TQ}) , current spike peak (t_I^{spike}) , peak radiated power (P_{rad}^{peak}) , radiated energy fraction (E_{rad}/E_{th}) , impurity assimilation.

• decreasing viscosity accelerates dynamics - earlier t_{rad}^{peak}, au_{TQ} , t_{I}^{spike}

reproduces larger l_p spike for slower pellets
 slower pellet → less dissipated flux at o-point
 → more reconnected flux at x-point at l_p spike

- RE seeds only for fastest pellet
- $E/E_{crit} > 1$ only for fastest pellet required for hot-tail generation

Hybrid MHD-RE Model in MARS-F Used to Study Interaction with Internal Kink

• RE fluid found to destabilize n=1 ideal internal kink and modify eigenmode structure

- kink does not produce significant RE loss unless perturbation field comparable to equilibrium
- RE hybrid model produces less RE loss than RE fluid model

- narrower toroidal deposition (d ϕ) delays dynamics later t $_{rad}^{peak}$, au_{TQ} , t $_{I}^{spike}$
 - implies deeper penetration but shows lower assimilation
- peak in radiated power, t_{rad}^{peak} , precedes au_{TQ} by \sim 50 μ s, current spike, t_I^{spike} , few 100's μ s after au_{TQ}

Good D2 Fraction Validation

- single upper injector, v=200m/s, d ϕ =0.10, visc=250m/s², D2=[0×,10×,100×]Ne • τ_{TQ} =[1.27,1.57,1.35]ms, radiation fraction [58,50,14]%
- **good** agreement with DIII-D experiment (Shiraki PoP 2016)

Loose Forward Coupling with NIMROD and CQL3D (Y. Petrov)

- CQL3D relativistic collisional/quasilinear bounce-averaged Fokker-Planck equation
 - solves for distributions of electrons and ions
 - flux surface averaged fields, toroidal geometry
 - ${\scriptstyle \bullet}$ options for RF/neutral beam/particle sources, applied E-field, and radial diffusion
- early coupled sims demonstrated sensitivity to the details of the thermal quench^a
- ${\scriptstyle \bullet}$ forward coupling feeds NIMROD flux surface averaged fields into CQL3D
 - loose forward coupling: NIMROD is run once independently
 - ${\scriptstyle \bullet}\,$ output fields from NIMROD \rightarrow input fields for CQL3D
- initial calculations do not consider RE loss
- tighter feedback in time coupling planned for future work
 - file based, python driven

^aR. W. Harvey, NF 2019

Runaway Electron Currents From CQL3D-NIMROD Simulations

outboard midplane profiles of T_e and n_Z at t=[0.0,0.5,1.0,1.235,1.335,1.475,1.8375]ms
 core temperature maintained throughout early phase (t=[0.0,0.5,1.0])
 peak radiation associated with core collapse (t=[1.235 -])
 impurities mix into core after rapid thermal collapse of core (t=[1.335,1.475,1.8375]ms)
 current spike (t^{spike}=1.510ms) occurs after thermal quench

(c) post thermal quench (t=1.335) stochastic fields

(d) late after thermal quench flux surfaces heal - core and (2,1) islands

Poincare Plots Sketch Destruction and Healing of Flux Surfaces

- (c) runaway electrons accelerated to MeV's
 - electron loss not taken into account recall Poincare plots
 loose coupling does not feed back RE's into NIMROD

future work

Summary and Future Work

- verification benchmark comparisons with M3D-C1 are invaluable
- NIMROD simulations reproduce and explain many experimental trends
 D2 impurity scan, dominant role of n=1, DSP RE trends
- parameter scans reveal numeric sensitivity landscape
- SPI thermal quench simulations are well in hand
- more challenging current quench and runaway electron simulations under way
- continue more detailed validation comparisons with experiment

• extend simulations to ITER predictions