
•Numerical modelling of Shattered Pellet Injection (SPI) assimilation using a new versatile 1.5D disruption simulator INDEX
•Comparison between injection of pure hydrogen pellets and that of neon mixed hydrogen ones regarding cooling time of q = 2 surface
•The amount of material that can be assimilated strongly depends on stored thermal energy of target plasmas parameters in ITER
•A specific difficulty for 15MA Hyd. L-mode can be resolved by using two-step (staggered) injection – hydrogen SPI followed by neon SPI
•Full spec 15MA DT H-mode operation is more favorable to raise the density with SPI but difficulties may arise if one loses the H-mode.
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• Runaway Electron (RE) Avoidance may require rising the electron density
by a factor 20-40 or more [1] but it is uncertain whether the plasma can
assimilate such large amount of material.

• Baseline of ITER Disruption Mitigation System (DMS) has assumed
assimilation of a small quantity of neon and a large quantity of hydrogen
by means of Shattered Pellet Injection (SPI) [2].

• Current design offers significant injection capability (24 barrels) for RE
avoidance, incl. redundancy and possibility to provide with different
composition for the different phases of an ITER pulse.

• ITER nominal pellet size: D=28.5mm, L/D=2, corresponding to 2x1024atoms
- Required number of neon atoms for TQ load mitigation is unclear
- Previous estimate of upper limit by CQ time: 5x1022 atoms = 5% molar ratio

(without taking into account densities raised by hydrogen [2])
• Realistic ITER DMS geometry

SPI param. value
Vp 200,500,700

ΔVp/Vp ±0.2
Nshard 1000, 250

κp-1 0.85, 1.35mm

θdiv 30 deg

A new versatile 1.5D disruption simulator INDEX
• Originally developed for VDE analysis of Japanese DEMO design

- Coupling between 2D equilibrium, 1D current-diffusion, and external circuits
- Benchmark for ITER upward VDE [3] against DINA [4]
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• Extending the code capability to describe transport and actuators
- Charge state of ion species resolved w/ OPEN-ADAS
- SPI module based on NGS scaling [5] and statistical fragment size model [6]

Key questions
• How SPI injection parameters can be optimized for RE avoidance?
• How to match the requirements for different target plasmas?

• Present calculation describes density rise and electron cooling
(radiation + dilution) due to particle source described with NGS scaling
- Application of more refined model is a future subject

• ITER reference scenarios from CORSICA data [7]
- Full spec 15MA DT H-mode scenario: Wth = 367 MJ
- 15 MA (non-nuclear) Hydrogen L-mode: Wth = 36 MJ
- Other low Ip scenarios: 7.5MA H-mode (He), 5MA H-mode (Hyd.): Wth = 30-40 MJ
- Intrinsic impurities (He, Be, W) → No visible impact here

A comparison of pure H and Ne mixed pellets
• A mixture of neon may lead to an immediate TQ when pellet shard crosses

q = 2 rational surface
- Mixed pellet cools Te down to 10 eV → destabilizing current perturbation
- Pure hydrogen pellet or increasing injection velocity suppressing or decreasing

perturbation → longer TQ time and possibility of direct core fueling by pellets
- Large shard sizes have a merit to allow deep penetration

Discussion: 15MA H-mode and L-mode

Neon Mixture
(slow pellet)

Neon Mixture
(fast pellet)

Pure Hydrogen
(slow pellet)

Profiles after SPI with the 15MA Hydrogen L-mode scenario: (a) The pellet shards penetrate simultaneously 
with the radiative cold front with 5% neon mixed SPI at Vp = 200 m/s. (b) No current perturbation is observed 
for pure hydrogen SPI at the same velocity. (c) The penetration of neon is separated from that of the cold front.

15MA DT H-mode
pre-TQ time after SPI

• 15MA DT H-mode with high Wth is favorable regarding density assimilation
and is resilient to radiation by neon
- Good density scaling up to a factor 2 below Rosenbluth density with optimistic

assumption (100% assimilation without ExB drift or other loss mechanisms)
- For neon mixed SPI, pre-TQ density rise is varied depending on the injection

parameters (Composition, Velocity, Shard size) → room for optimization

• 15MA Hyd. L-mode with low Wth did not show any gain, other than pure
hydrogen injection because small neon quantity leads to fast TQ ~ 1-2 ms.
- Similar results in other low Ip scenarios

density at TQ time pre-TQ time after SPI density at TQ time

15MA Hyd. L-mode

Pre-TQ time (Left) and core density rise inside q=2 surface (Right) as functions of injected hydrogen 
quantities with different pellet compositions (0%, 0.5%, 5% neon) and pellet velocities (200, 500, 700 m/s). 
For the 15MA DT H-mode scenario, the cyan symbols indicate the results obtained with large shard sizes 
(Nshard=250) with 0.5% neon mixed SPI at Vp = 500 m/s.

• Because of absence of steady-state source of RE seeds, RE avoidance in
15MA Hyd. L-mode could be achieved reliably with pure hydrogen SPI.
- To be compatible with TQ and CQ load mitigation, disruption mitigation with two-

step SPI (hydrogen SPI followed by neon SPI) is proposed. INDEX showed the
assimilation efficiency of 2nd neon SPI is less than 10%. Assessment of
TQ/CQ/VDE load is needed. See, more details in paper.

• RE avoidance in nuclear phase is still a major challenge (see, [8])
- Massive deuterium injection may lead to recombination of hydrogen [9,10],

resulting in the decrease of electron drag and significant avalanche.
- Our work has focused favorable density assimilation of DT H-mode but this may

in turn attract our attention to difficulties of the baseline for DT L-mode.

Te ne

j

Pellet

Pellet

cold region
(<10eV)

> 100eV
cold region

(<10eV)

Pure hydrogen

Pure 
hydrogen

0.5% neon

5% neon

0.5% neon
5% neon


