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Abstract 

New tridimensional structures have been identified that can be maintained spontaneously 

in fusion burning plasmas and transfer energy from the emitted reaction products to the 

reacting nuclei populations. The involved resonant mode-particle interactions are shown to 

affect the initial mode spatial profile. Minimal electron temperatures of the order of the 

ideal ignition temperature for DT plasmas are required in order to avoid transferring energy 

at significant rates to the electron population by mode-particle interactions. The observed 

fusion reaction rates resulting from energetic neutral H-beams injection into D-plasmas 

confirm the validity of investigating more sophisticated and less severe ignition conditions 

(“cool fusion”) for burning plasmas than those commonly considered. New perspectives 
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for fusion research can be envisioned considering that magnetically confined plasmas 

involve regimes where particle distributions are non-thermal and significant self-

organization processes are present. 

 

I. Introduction 

Theoretical considerations and available experimental evidence indicate that 

envisioning meaningful fusion burning plasmas requires consideration of 

i) characteristic collective modes [1] that can be excited in them 

ii) the fact that as a result of the effects of these modes the distribution in momentum space 

of the fusing nuclei are not strictly thermal and the reaction rates can be significantly 

different from those evaluated with thermal distributions [2] 

iii) the presence of self- organization processes [3]. 

In the following sections we show that the emergence of tridimensional structures in 

magnetically confined plasmas can significantly change the conditions under which 

meaningful fusion burn conditions can be reached and make the “cool fusion” approach 
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possible. This would avoid the need of massive sustaining system to maintain burning with 

milder conditions than those estimated traditionally adopting the “thermonuclear” 

approach based on considering strictly thermal regimes. 

The identified tridimensional structures can be classified as “contained ballooning 

modes” that have the features of being localized in the radial direction, therefore not 

propagating their energy outside the plasma column. Ballooning modes [4] have the 

attractive feature of involving an efficient coupling of waves with a spectrum of phase 

velocities that lends itself well to the interaction with different particle populations [5]. 

Therefore, the involvement of non-linear processes and the problems associated with them 

[6] is avoided. 

 

II. Homogeneous Plasma Model 

It is helpful to refer to a homogeneous DT plasma [1] immersed in a constant magnetic 

field zB=B e . The density perturbations are of the form: 

 

( )ˆ expkn n i t ik y ik z ⊥= − + +  
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with 2 2 2

ce pe  , ( )/ce eeB m c = , 
2 24 /pe ene m = . 

The relevant (cold plasma) dispersion relation appropriate for low -  plasmas is 

( )

2 2 2
2 2

2 2 2 2 2/

D A
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D
k S k

V V S k V




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                                 (II-1) 

for two nuclei populations (D, T) and 2 2

T   , where 

22 2 2
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,                              (II-2) 

2 2

2 2 2 2
1 T D T T

A

D D D T

n n
D

n n 

  
 + − + 

 −  − 
,                                    (II-3) 

2
2

4
AD

D D

B
V

n m
 , 

D

D

eB

m c
  , 

2

3
T D    

with 
2 2k k⊥ . The lowest frequency modes correspond to 2 2

T   , 0AD  and 

( )1 3 / 2A nS +  where /n T Dn n  .  Thus 
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( )
2

2 2 2 2AD
A

A

V
k k

S
 ⊥ +  ,                                               (II-4) 

that gives the frequency of the familiar compressional Alfvén waves, as 2 2 2

A  = +  and 

2 2 4 4/ /T A T   . We notice that 

2
2 2

2

A
D

D

k d


⊥=


, where 
2

2

2D

pD

c
d


  and 

2
2 4 D
pD

D

n e

m


 = . 

Therefore, the low frequency limit is found for 2 2 1Dk d⊥  . 

The “apt frequency” modes correspond to the T  resonance that is 2 2 2

T =  + . In 

this case the evaluation of 2  makes it necessary to find the expressions for AD  and AS  

to the order ( )
2

2 2/ T  . Then 

2
2 2 2

2 2 2
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,                            (II-5) 
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and, neglecting 
2k  relative to ( )2 2 2 2 2/ /A T AD T DS V d  , 
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For 2 2 2 2

0k k k k⊥ ⊥= + + , we obtain 
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and 

( ) ( )2 2 2 23 4 1 26

2 25 25
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III. Simplest Confinement Configuration 

Considering the importance that the geometry of the plasmas from which relevant 

modes can emerge we refer, as a start, to an axisymmetric toroidal configuration with a 

large aspect ratio and a circular cross section of a low -  plasma column. Therefore, 

( )n n r , where r a , the minor radius, and the magnetic field is represented by 

 

( )
( )0

01 / cos

B
B r

r R
  


+

+
B e e  

with 
2 2

0B B   and 0a R . The class of ballooning modes that are analyzed [7] are 

tridimensional and of the “disconnected” type described as 

( ) ( ) ( ) ( ) 0

0
ˆ , , , expn r n r A r r i t in q r      − − + −                        (III-1) 

in the neighborhood of a rational surface 0r r= , where ( ) ( ) 0 0

0 0/ /q r rB R B m n= =  and 

( )0,A r r −  is a   - periodicity restoring (for 0r r= ) function that vanishes at  =  . 
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The familiar ballooning modes were introduced as purely growing modes [4, 7] and 

with ( )0,A r r −  as even function of  , while here we consider modes that are oscillatory 

with damping or growth rates that are smaller than the relevant frequency of oscillation 

and ( )0,A r r −  functions that can have either   - parities. As will be shown, the relevant 

modes are contained [8] within a relatively small radial layer r  such that 

0 0 0

0 0/ rr m r    

where 0

0 0r r  and, within this layer, we take ( ) ( ) ( ) ( )
2

0 0 0 / 2n r n r r r n r r n  + − + −
 

  and 

( )0 0 01 / cosB B r R  −  . 

The dispersion equations for the modes of interest can be inferred from the same 

dispersion relation as Eq. (II-1 ) rewritten as ( ) ( )2 2 2 2 2 2 2 2/ / /k k c S D S c k ⊥
 + − −
 

 

where 

2

2 2 2 2

1 2 1
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T
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D D T
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 

 
− + 

− − 
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2 2

2 2 2 2

1 4 1

9

pD pD D T

D D D D T

n n
D

n n

 

   

  
+ + 

 − − 
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In addition, k⊥  and k  are replaced by the following operators 

) ( ) ( )
2

0 2
22 2

0 02 2

0 0 0

2 6
1

op

m
k k r r r r

r r r r
⊥ ⊥

    
→ − − + − −   

   
,                 (III-2) 

)
( )

2 2
2 2

22 2

0 0

1

op
k k

l R q 

 
→ − −

 
.                                (III-3) 

 

IV. Contained Ballooning Modes 

The tridimensional fluctuating structures that have been chosen for consideration 

besides providing a means to transfer energy among different particle populations should 

have the property of not transferring the energy associated with them out of the plasma 

column. The simplest limit to consider is the low frequency range 2 2

T    and 

)
2

0 2 1Dk d⊥  . In this case 0 0

0/k m r⊥  and 
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( )2 2 2 2 2

0 0
r

    = + + + , 

where ( ) ( )
2 2

2 0 0

0 0/ /AD Am r V S , ( )1 3 / 2A nS + , 2 4 2

0 0 / T   , ( )2

r
  is associated 

with the mode radial localization [8] and  
2

  is related to the ballooning structure in the 

  variable. 

Then, following the procedure given in Ref. [8] to derive the equation that is 

characterized by the operator [Eq. (III-2)] and the expansion of ( )n r  around 0r  given 

earlier, we obtain 

 

2

0
0

1
exp

2 r

r r
n n

  −
 −  

   

,                                         (IV-1) 

where 0

0 /r r m . 

The simplest   - ballooning structure can be derived by considering modes localized 

over an arc   where 2cos 1 / 2 −  and ( )0 1 / 2BB B +  with 2

B B   . In addition, 
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for the sake of simplicity, we condition the analysis to the limit 2 2 2

0B T     . Then 

the relevant ballooning equation becomes 

( )
( )

( )
( )

( ) ( )

2 2
0 02

2
0 2 2

0 02 2 2

00 0

AD

AD B

AA

V md
A V A

d S rS q R
    



 
 

− 
  

,               (IV-2) 

where ( ) ( )0 0,A A r r  −  and ( )
1/20

0 / 4AD D DV B n m .  The considered solution is 

 

( )
2

0

1
exp

2
A






  
= −  

   

, 

where ( ) ( )
1/21/4 0

0 0/ /r R m q . 

The “apt frequency” modes correspond to choosing 2 2 2

0T =  +  where 

( )0 0 /T TeB m c =  and ( )2 2

0 1T T B  + . Then, maintaining the limit 2 2

0/B T    for 

the sake of simplicity, 
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2 2 2 2

0

2 2 2 2

0 0
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1 1
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  
 

 

   
− + − − +  

    

,                    (IV-3) 
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  

 
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      
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   
− −   

   

            (IV-4) 
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 
 

 



   
− + + − − + −   

    

   
− −   

   

              (IV-5) 

and 

2 2 2 2
2 2

2 2 2

0

4 74 32 26 4
1 1 1

5 25 25 25 25

D D D D D
pT B

T T T T T T

D n n n n n
S

S n n n n n


  

        
− + − + − + + +      

        

. (IV-6) 

Therefore, 
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) )
2

2 2 2 2

2

2 2

2 2

0

2 4 74 32
1 1

3 5 25 25

26 4
                                        1

25 25

T D D D
D B

op op
D T T T

D D
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n n n n

n n

n n

 



⊥

   + + − + −       

   
+ + +   

   

                (IV-7) 

where )2

op
k⊥

 and )2

op
k  are given by Eqs. (III-2) and (III-3). The mode radial structure can 

be derived as in the case of the low frequency limit while the relevant (simplified) 

ballooning equation becomes 

( )

( ) ( )

( )

2
02

0 2

2 2 2

0 0

2

02

0

1 2 74 32 1

3 25 25

26 4 1
                                             

25 25

pD

B n

n

n

n T

d A

d cR q

A


  

 


 



  
+ −  

  

  
− + +   

   

              (IV-8) 
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where ( )0

0pD pD r r = = . Clearly, the limit corresponding to 2 2

0/ T B   remains to be 

analyzed. 

 

V. Mode-particle Resonant Interactions 

The mode-particle resonant interactions [6] that are involved in the transfer of energy 

among different particle populations and can be compatible with each other have to take 

into account the fact that ballooning modes can be viewed as composed of travelling waves 

with equal amplitudes propagating in opposite directions along the magnetic field. These 

waves have the same frequency as that, 0 , of the ballooning modes but different phase 

velocities 0 / lk  where lk  is the parallel (to the magnetic field) wave number for each wave 

component. Pairs of wave numbers with opposite signs can be invoked in the set of mode-

particle resonance that is considered. 

The distributions in momentum space of the fusing nuclei are assumed to be 

symmetric in v . In particular, the mode that is considered to be apt at transferring energy 

from the fusion reaction products to the fusing nuclei, minimizing the interaction with the 
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electron population, is that with a frequency 0 T  . Then the set of mode-particle 

resonances that involve the tritium and the  - particle populations for comparable values 

of lk  consists of 

)p T

l
T

k V =   and  )p

lk V 

 
 + = ,                                      (V-1) 

for 0  = + , considering that the wave energy density exchange is proportional [3] to 

 . Therefore, 

)
)

2

p

l
T

Tp
Tl

k V

Vk






=


.                                               (V-2) 

The   - particle distribution in momentum space is assumed to be isotropic while 

considering distributions of the fusing nuclei as symmetric in v  is consistent with the 

symmetry of modes affecting their tails. For the sake of simplicity, we have assumed that 

the trapped particle population, involving the consideration [9] of relevant bounce 

frequencies 
bj , is relatively small. 
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We note that the growth or the damping rates associated with mode particle 

resonances [6] represented by v 0k− −− =  depend on v /k⊥ ⊥  that is on finite 

gyroradius effects. In the case of the   - particle population 1Dk k d⊥ ⊥  for the modes 

under consideration, as 

9v 0.7 10  cm/s, ( )5v / v / 1.4 / /10D B G    =  =   cm, 

( )15 30.9 10 /Dd cm n−  cm. 

On the other hand, for the corresponding resonating tritons 2 2 1Tk ⊥  , but this 

circumstance is compensated by the fact that the density of resonating tritons can be 

considerably larger than that of the   - particles resonating with the same mode. Since 

)
1

3

p

lk



, 

the relevant modes will have to exclude waves with 0lk =  and the spectrum of waves 

composing relevant ballooning modes will need to include this value of p

lk . Clearly, in 
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order to minimize Landau damping on the electron population the relevant temperature eT  

will have to be sufficiently high so that 

2 2

,th eV V  . 

The excitation of modes [1] with D   and their harmonics [10] has to be examined in 

a different context and in particular in that of their interactions with the electron population 

[8]. 

Relevant experimental observations occurring in a different confinement 

configuration that that considered here is reported in Ref. [2]. These involve a drastic 

increase of the rate of emission of neutrons produced by D-D reactions resulting from the 

injection, into a Deuterium plasma, of non-reacting protons through a neutral hydrogen 

beam injection (15 keV) system. Consistently with our considerations, the frequency of the 

excited mode has been found to be ion cyclotron frequency of the target Deuterium plasma 

which is well below that of the proton beam. 
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VI. Evolution of Ballooning Modes 

Referring to the combination of growth and damping resulting from the interaction of 

the considered modes with the reaction products and the fusing nuclei, the modes will 

evolve to become purely oscillatory where the growth and damping rates compensate each 

other. In particular, we expect that the mode radial profile will change during its evolution 

as shown by the following analysis referring to the case where damping prevails. 

Confirming the observation that an oscillatory ballooning mode can be viewed as a 

superposition of standing modes having the same frequencies and involving a continuous 

spectrum of the relevant phase velocities [4], we note that, initially, 

( ) ( )

2 2

0 02 2

0

ˆ exp exp
2 2

l
n i t i t

l


 



   
  − −  − − 

      

.                      (VI-1) 

Here ( )
2

0
1  , 0 0l R q =  represents the length along a magnetic field line and the 

superposed waves are represented by 

( ) ( )
22exp 2 l lk l i t k l −  − −

 
.                                     (VI-2) 
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Clearly, each component will be subject to a specific wave-particle resonant interaction. 

Thus ( )2

0 0 li k  = −  and if, for the sake of simplicity, we assume that 

( ) ( )
22 2

0 2l lk k l =                                               (VI-3) 

as a “crude” model, we find 

( ) ( ) ( )

2

01/2 2
ˆ exp

1 2 1

l l
n i t

t l t


 

 
 − − 

+  +  

.                           (VI-4) 

Clearly, this indicates that the resulting mode profile becomes broadened and lowered as it 

evolves. 

Starting from an initial ( )0t =  mode profile represented by ( )
22exp[ / 2 ]l l−   an 

accurate numerical analysis of the mode profile evolution has been carried out involving 

the relevant Landau damping with a Maxwellian ion distribution and it has confirmed 

qualitatively the results represented by Eq. (VI-4) as shown by the following figure. 
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Fig.1 Evolution in time of a ballooning mode profile involving mode-particle resonances 

with a thermal velocity space distribution. 
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The evolution of a ballooning mode with the same initial profile is also being analyzed 

adopting a model involving resonances with two ion distributions that have different peaks 

in momentum space. 

 

VII. Final Remarks 

Significant fusion burning regimes are characterized by low degrees of collisionality 

and where the longitudinal electron thermal conductivity is relatively large. For these 

regimes a novel process [11] involving significant magnetic reconnection related to the 

electron temperature gradient has to be taken into consideration. The envisioned effect of 

the process is to regulate [3] the electron temperature profile affecting the global energy 

balance of the plasma column. 

We have estimated the plasma density fluctuations that correspond to the amplitudes 

of modes, of the considered type, needed to extract tens of megawatts from the generated 

 - particle populations. The fluctuation level has been found to be sufficiently low and the 
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relevant scale distances sufficiently short as to not significantly degrade the particle and 

thermal energy confinement of the reacting plasma. 

Magnetically confined plasmas with “temperatures” of fusion interest involve 

circulating and trapped particles. When referring to the considered modes we note that 

i) the relevant phase velocities and the frequencies are higher than the thermal velocities 

and the thermal bounce frequencies, respectively, of the reacting nuclei. Therefore, the 

modes “see” only circulating particles 

ii) the average bounce frequencies of the trapped electrons and the transit frequencies of 

the circulating electrons exceed the considered mode frequencies, and the relevant mode-

particle interactions are neglected 

iii) for the collisionless  - particle population the formalism described in Ref. [9] that is 

appropriate for ballooning modes needs be applied. The adopted  - particle distribution is 

of the kind represented by 
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with 0 0C  . 

Clearly, the injection of RF waves by systems with moderate power level deserves to 

be analyzed in order to investigate the possibility of coupling with the contained ballooning 

modes introduced earlier for the purpose of controlling their amplitudes. Moreover, given 

the importance of finding optimal paths to access the burn conditions with the catalyzed 

DD reaction chain, the presented analysis will be extended to the case where 4 nuclei 

populations have to be considered.   
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