

ion diamagnetic drift effects in QH-mode plasmas in DIII-D and JT-60U

N. Aiba, X. Chen*, K. Kamiya, M. Honda, T. H. Osborne*, K. H. Burrell*, P. B. Snyder* National Institutes for Quantum and Radiological Science and Technology (QST), *) General Atomics aiba.nobuyuki@qst.go.jp

ABSTRACT/CONCLUSION

- MHD stability in the QH-modes with EHO in DIII-D and JT-60U has been investigated with the extended MHD code MINERVA-DI.
- It was found the kink/peeling mode, responsible for triggering EHO, is stabilized when considering the plasma rotation and the ion diamagnetic drift (ω_{*i}) effects, though the rotation alone destabilizes the mode.
- Results of the stability analysis show not the measured vxB rotation of carbon but the vxB one averaged with carbon and deuterium stabilizes effectively the kink/peeling mode.
- The averaged vxB rotation evaluated based on the neoclassical theory can give reasonable results in stability analysis in QH-mode plasmas. This makes us hopeful to predict QH-mode plasma condition in future reactors like ITER/DEMO.

• If the toroidal rotation direction is inverted, the stabilizing effect is affected. The impact is not unique; the effect becomes weaker in some cases, but stronger in other cases.

BACKGROUND AND OUR RECENT RESULTS

- QH-mode, found in 1999[Burrell Bull. APS1999], has EHO whose toroidal mode number is typically from 1 to <10.
- After the EHO appears, large ELMs disappear although pedestal performance does not change much.
- It is experimentally confirmed that plasma edge rotation (shear) is necessary, and the QH-modes in DIII-D and JT-60U favor B_t and I_p directions clockwise from the top view.
- DIII-D team has explained that EHO is triggered by low-n MHD modes destabilized by rotation (shear) [Burrell PRL2009].
- Recently, we found that the low-n kink/peeling mode (K/PM) is stabilized by rotation in case the ion diamagnetic drift ω_{*i} is taken into account simultaneously.
- In this study, we investigate impact of the coupled rotation and ω_{*i} effects on MHD stability in several QH-mode plasmas in not DIII-D and JT-60U, and discuss the kind of rotation responsible for triggering EHO.

Waveform of QH-mode [Chen, NF2016]

Impact of rotation on K/PM stability [Aiba, NF2020]

Results of stability analysis with rotation measured in experiment

- In all the discharges, the $\Omega_{v \times B,CD}$ rotation stabilizes clearly the kink/peeling modes by coupling with the ω_{*i} effect, though the $\Omega_{v \times B,C}$ one can stabilize them only in #153440.
- The toroidal mode number of K/PM is consistent with that of dominant EHO, n_{EHO} .
- Since plasma rotation has been confirmed as a main player for triggering EHOs but $\Omega_{v \times B,C}$ changes little the kink/peeling mode stability, $\Omega_{v \times B,CD}$, the one-fluid rotation averaged between C and D, could be a strong candidate of the rotation responsible for triggering EHO.

Results in JT-60U

QH-mode plasma in JT-60U;

E42868@6.5s/ $n_{EHO} = 1,2$

As in the DIII-D case, plasma rotation stabilizes the K/PM when considering the ω_{*i} effect, though both ($\Omega_{v \times B}, \omega_{*i}$) and (j_{max}, α_{max}) are much different from those in DIII-D plasmas.

Basic equation for linear stability analysis

- Frieman-Rotenberg (F-R) equation [Frieman RMP1960] can be the basic equation when analyzing linear MHD stability including rotation effect.
- For including the ω_{*i} effect simultaneously, the following extended F-R equation can be employed as the basic equation solved numerically with MINERVA-DI [Aiba PPCF2016].

 $\rho_{0} \frac{\partial^{2} \xi}{\partial t^{2}} + 2\rho_{0} (\boldsymbol{V}_{0,MHD} \cdot \nabla) \frac{\partial \xi}{\partial t} + \rho_{0} (\boldsymbol{V}_{0,*i} \cdot \nabla) \frac{\partial \xi_{\perp}}{\partial t} = \boldsymbol{F}_{MHD} + \boldsymbol{F}_{*i},$ $\boldsymbol{F}_{MHD} = \boldsymbol{F}_{s} + \boldsymbol{F}_{d},$ $\boldsymbol{F}_{s} = \boldsymbol{J}_{0} \times \boldsymbol{B}_{1} + (\nabla \times \boldsymbol{B}_{1}) \times \boldsymbol{B}_{0} - \nabla P_{1},$ $\boldsymbol{F}_{d} = \nabla \otimes \left[\rho_{0} \xi \otimes (\boldsymbol{V}_{0} \cdot \nabla) \boldsymbol{V}_{0,MHD} - \rho_{0} \boldsymbol{V}_{0} \otimes (\boldsymbol{V}_{0,MHD} \cdot \nabla) \xi\right],$ $\boldsymbol{F}_{*i} = \frac{\rho_{0}}{2eN_{e}B_{0}^{2}} \{ (\nabla \cdot (\xi \times \nabla P_{0})\boldsymbol{B}_{0} - (\boldsymbol{B}_{0} \cdot \nabla P_{0})\nabla \times \xi) \cdot \nabla \} \boldsymbol{V}_{0,MHD,\perp}$ $+ \nabla \otimes \left[\rho_{0} \xi \otimes (\boldsymbol{V}_{0,*i} \cdot \nabla) \boldsymbol{V}_{0,MHD} - \rho_{0} \boldsymbol{V}_{0,*i} \otimes (\boldsymbol{V}_{0,MHD} \cdot \nabla) \xi\right],$ Assumptions $\nabla \cdot \boldsymbol{\xi} = 0, \quad (\boldsymbol{B} \cdot \nabla) \boldsymbol{\xi} \ll 1$

Plasma (fluid) rotation considering in MINERVA-DI

- Experimentally, toroidal (and sometimes poloidal) rotation of carbon 'C' $(\Omega_{\phi,C}, \Omega_{\theta,C})$ is measured in DIII-D. In JT-60U, only $\Omega_{\phi,C}$ could be measured.
- At present, the DIII-D team pays attention to $\Omega_{\phi,C}$, $\Omega_{\theta,C}$, and the $E \times B$ rotation defined as $\omega_{E \times B} = \frac{E_r}{RB_p} = \omega_{*C} + s_I \omega_{\phi,C} + \omega_{\theta,C} = \omega_{*c} + s_I \Omega_{\nu \times B,C},$

where s_I is the sign of I_p direction with respect to B_t one.

- We regard $\omega_{E \times B}$ as a good parameter for EHO trigger condition[Garofalo NF2011].
- Note that MINERVA-DI assumes as $V = V_{\nu \times B} + V_{\parallel} + V_{*i} = V_{MHD} + V_{*i}$, hence, using $R\Omega_{\nu \times B}$ as $V_{\nu \times B}$ corresponds to $\omega_{E \times B}$.

- Both Ω_{v×B,C} and Ω_{v×B,CD} stabilizes the mode, but the n number to be unstable near the operational point is different (4 with Ω_{v×B,C}, 2 with Ω_{v×B,CD}).
 - $\begin{array}{c} \Omega_{v \times B,CD} \text{ could be better, because the } n \\ \text{number is consistent with } n_{EHO} = 1,2. \end{array}$

Impact of toroidal rotation direction on stability

- Pedestal stability in case inverting the toroidal rotation direction has also been investigated using two DIII-D discharges.
- In both discharges, the stability boundary of K/PM moves (slightly) downward on the diagram by considering $\Omega_{v \times B,C}$, but moves upward when using $\Omega_{v \times B,CD}$.
- If assuming the stabilizing effect on K/PM is important to obtain EHO, destabilization of K/PM when inverting the rotation direction could be consistent why QH-modes in DIII-D and JT-60U favor the rotation direction.
- Further study, such as using measured data for deuterium, is necessary to clarify why QH-mode favors $ctr-I_p$ toroidal rotation.
- Analysis with inverted B_t direction is also on going.

Candidates of rotation responsible for triggering EHO

- The mass density is composed of deuterium and carbon, hence, there are at least two candidates of $\omega_{v \times B}$ to be included in the analysis.
 - 1. $\Omega_{v \times B} = \Omega_{v \times B,C}$: the rotation of 'D' is assumed as the same as that of carbon (measured)
 - 2. $\Omega_{\nu \times B} = (\rho_D \Omega_{\nu \times B,D} + \rho_C \Omega_{\nu \times B,C}) / (\rho_D + \rho_C) = \Omega_{\nu \times B,CD} ; s_I \Omega_{\nu \times B,D} = \omega_{E \times B} \omega_{*,D}$
- In [Aiba et al., NF2020], the impact of $\Omega_{v \times B,C}$ on MHD stability in DIII-D #153440 QH-mode plasma was investigated, but that of $\Omega_{v \times B,CD}$ has not been analyzed. Hence, in this study, we analyze the MHD stability in several QH-mode plasmas in DIII-D and JT-60U by considering $\Omega_{v \times B,C}$ or $\Omega_{v \times B,CD}$, and discuss which is responsible for triggering EHOs.
- In addition, E_r can be determined through radial force balance equation in neoclassical theory (NC) if $\Omega_{\phi,C}$, n_C , T_C are measured. Hence, the stability in QH-mode plasmas is also investigated by considering $\Omega_{v \times B,CD}$, which is estimated based on NC with CHARROT code [Aiba, Honda, NF2017].

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698 and DE-FG0295ER54309. This work was partially supported by JSPS KAKENHI Grant Number 15K06656 and 18K03593, and was carried out using the JFRS-1 supercomputer system at Computational Simulation Centre of International Fusion Energy Research Centre (IFERC-CSC) in Rokkasho Fusion Institute of QST (Aomori, Japan).

Results with rotation estimated with neoclassical theory in DIII-D and JT-60U

- $\Omega_{v \times B,CD}$ was estimated with neoclassical theory, $\Omega_{v \times B,CD,NC}$, in DIII-D and JT-60U.
- The $\Omega_{v \times B, CD, NC}$ profile in DIII-D reasonably agree with the $\Omega_{v \times B, CD}$ in experiment; those in #153440 are almost the same as each other.
- The difference between these profiles mainly affects the stability boundary in ballooning mode side.
- In JT-60U, the rotation profile near very edge region is clearly different, but the stability boundary is similar to each other.
 Rotation estimated with neoclassical
- theory can give reasonable results of stability analysis in QH-mode plasmas.

