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ABSTRACT/CONCLUSION Results in DIII-D

e MHD stability in the QH-modes with EHO in DIII-D and JT-60U has been investigated with the QH-mode plasmas in DIlII-D;  #153440@1.725s/ngyo = 2, #157102@2.42s/ngyo = 1,

extended MHD code MINERVA-DI. #157188@2.065/ngyo = 1,2, #163518@2.355/ngyo = 1
e [t was found the kink/peeling mode, responsible for triggering EHO, is stabilized when #153440@1.7255/ Mgy = 2 #163518@2.355/nzy0 = 1
considering the plasma rotation and the ion diamagnetic drift (w,;) effects, though the Pressure [wmmeirzs | ez | Range of plasma parameters
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e (QH-mode, found in 1999([Burrell Bull. APS1999], has EHO whose = T v v
toroidal mode number is typically from 1 to <10. P’ ———] Results of stability analysis with rotation measured in experiment
e After the EHO appears, large ELMs disappear although pedestal ~ £oi #153440@1.7255 #o7102@2 425 #157188@2.06s #163518@2.35s
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 DIII-D team has explained that EHO is triggered by Waveform of QH-mode [Chen. Nr2016] o 1 o
_ .1: . Impact of rotation on K/PM stability I ] © I
low-n MHD modes destabilized by rotation (shear) [Aiba. NF2020] | 5 . = . 5 .
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[Burrell PRL2009].

e Recently, we found that the low-n kink/peeling
mode (K/PM) is stabilized by rotation in case the ion
diamagnetic drift w,; is taken into account
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* Inallthe discharges, the £,«p ¢p rotation stabilizes clearly the kink/peeling modes by coupling with the w,;
effect, though the Q.5 ¢ one can stabilize them only in #153440.
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e The toroidal mode number of K/PM is consistent with that of dominant EHO, ngy,.

b
rotation freq. [krad/s]

simultaneously. 5 05 ; i % * Since plasma rotation has been confirmed as a main player for triggering EHOs but {),,« 5 - changes little the
- : - - 155440 1725, EHO (NR2ST) wo o 153440 1725 EHO (1R2ST) wl o kink/peeling mode stability, () the one-fluid rotation averaged between C and D, could be a stron
 |n this study, we investigate impact of the coupled [ opemonpon] | o oemosen] ] P & Y, S4uxB,CD g ) g

rotation and w,; effects on MHD stability in several candidate of the rotation responsible for triggering EHO.
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 Pedestal stability in case inverting the toroidal rotation direction DIII-D
#153440@1.725s/ngyo = 2 #157102@2.42s/ngyo = 1

#153440@1.725s

has also been investigated using two DIII-D discharges.

%- #157102@2.42s

Plasma (fluid) rotation considering in MINERVA-DI

* Experimentally, toroidal (and sometimes poloidal) rotation of carbon ‘C* (Q¢ ¢, Qg,c) is
measured in DIII-D. In JT-60U, only Q4 ¢ could be measured. (slightly) downward on the diagram by considering ), ¢, but

moves upward when using {,xg cp.
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* In both discharges, the stability boundary of K/PM moves
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* At present, the DIlI-D team pays attention to {1y ¢, {1 ¢, and the E X B rotation defined as

E, e |f assuming the stabilizing effect on K/PM is important to obtain ] _sold orignal, broken: 2 inverted f‘;"”‘“’.”gi”a" gi‘;“e”ﬁ%f”"e”ed%
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RB, ’ ’ ’ EHO, destabilization of K/PM when inverting the rotation 4
where s; is the sign of I, direction with respect to B, one. direction could be consistent why QH-modes in DIII-D and JT-60U @ommomm] o[ @ Sremoroon ] ypstapic |
e Weregard wgyp as a good parameter for EHO trigger condition[Garofalo NF2011]. favor the rotation direction. ;\?T*fa e 0 R -
* Note that MINERVA-DIl assumes as V = Vg + V| + V,; = Vyyup + V., hence, using  Further study, such as using measured data for deuterium, is é_{ E
RQ,«p as Vg corresponds to wg«p- necessary to clarify why QH-mode favors ctr-I,, toroidal rotation. '\‘f‘ﬁf steble Al s W oms stable |
e Analysis with inverted B, direction is also on going. — ’a — ' Aa —
Candidates of rotation responsible for triggering EHO . _ _ . . .
* The mass density is composed of deuterium and carbon, hence, there are at least two Results with rotation estimated with neoclassical theory in DIII-D
candidates of w,«p to be included in the analysis. and JT-60U

1. Quxp = Quxpc :the rotation of ‘D’ is assumed as the same as that of carbon (measured)

* O,«pcp Was estimated with neoclassical DIII-D JT-60U
2. Quxp = (PpQuxs,p T PcQuxp,c)/(Pp + Pc) = Quxp,cp 3 SiQvxBp = WExB — Wap theory, Q<5 cp nc, in DII-D and JT-60U. #133440@1.7255/ g0 = 2 #157102@2.425/ngho = 1 S
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