A Physics model of the rotating halo current during VDE disruption ByoungHo Park, JunGyo Bak, JayHyun Kim, JeongWon Lee Korea Institute of Fusion Energy

bhpark@kfe.re.kr

Motivation	Magnetic Sensors in the Analysis (halo current)	Time series of data during VDE disruption
From the 2016 campaign, We have observed that n=1 halo toroidal asymmetric current rotate during VDE disruptions.	A halo current sensors at top & RC	Data used for analysis x^{10^5}
The rotation frequency is about several hundreds and is far less then the plasma toroidal flow velocity. The rotation directions are mostly counter-flow & IP and <u>some times</u> the rotating direction flipped opposite direction. It's real puzzle.	 bottom of the passive stabilizer supporting leg. Sensors are installed at pi/2 	$ \begin{array}{c} lp : for disruption identification \begin{array}{c} $
Other devices (DIII-D, JET, etc.) also reported the same phenomena	toroidaly separated supporting legs of <u>divertors</u> . The toroidal positions of sensor are 36°,	Zp : VDE direction $\begin{bmatrix} 5 & -0.2 \\ -0.3 & -0.4 \\ -0.4 & 3.02 & 3.04 & 3.06 & 3.08 & 3.1 & 3.12 & 3.14 & 3.16 & 3.18 \end{bmatrix}$
Resonant coupling of the rotating EM force to the machine structural vibration might be destructive	126°, 216°, 306° ➤ In this presentation, we	Halo Current : Data for analysis
ITER is also concerning this phenomena for safe operation	analyzed <u>down ward</u> VDE. 4 halo sensors at bottom legs	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- No plausible model to explain the phenomena
- We propose a physics model based on the precession of the angular momentum

are used

Toroidal Phase of the n=1 Halo Current (from 4 sensors)

Examples (many turns and rotation flipping)

A physics model of the rotating halo current

Assumptions for this model

Forces, Torques for the tilted toroid

Forces, Torques for the tilted toroid by PFs

and Torque by the P.P.

14

15

16