28th IAEA Fusion Energy Conference 2021/May/10-15 TECH/P3-20, May/12

reactor.

RECENT DEVELOPMENT OF ENGINEERING DESIGN FOR QUASI-AXISYMMETRIC STELLARATOR CFQS

<u>Akihiro Shimizu^{1,2}, Shigeyoshi Kinoshita¹, Mitsutaka Isobe^{1,2}, Shoichi Okamura¹, Kunihiro Ogawa^{1,2}, Motoki Nakata^{1,2},</u> Yasuo Yoshimura¹, Chihiro Suzuki¹, Masaki Osakabe^{1,2}, Takanori Murase¹,Sho Nakagawa¹, Hiroyuki Tanoue¹, Yuhong Xu³, Haifeng Liu³, Hai Liu³, Jie Huang³, Xianqu Wang³, Jun Cheng³, Guozhen Xiong³, Dapeng Yin⁴, Yi Wan⁴, Changjian Tang^{3,5}

¹ National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu, 509-5292, Japan

² The Graduate University for Advanced Studies, SOKENDAI, Toki, Gifu 509-5292, Japan

³ Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China

⁴ Hefei Keye Electro Physical Equipment Manufacturing Co., Ltd, Hefei 230000, China

⁵Physics Department, Sichuan University, Chengdu 610041, China

Abstract	Finite beta equilibrium with bootstrap current		Mock-up modular coil		
The CFQS is a quasi-axisymmetric (QA) stellarator device, which is constructed on the joint project of National Institute of Fusion Science	Bootstrap current in CFQS	Dependence of bootstrap current	Mock-up coil was manufactur	ed to check feasibility of construction	on, and achieved accuracy.
work has been performed. Based on CHS-qa design, the magnetic field configuration for CFQS is	In QA, large bootstrap current is expected, because its neoclassical character is similar to tokamak.	on volume averaged beta 40 35 $n_{e0} = 1.0 \times 10^{19} \text{ m}^{-3}$			

determined. Typical parameters of magnetic field strength, major radius and aspect ratio are 1.0 T, 1.0 m, and 4.0, respectively.

Up to now, a mock-up modular coil having the most complicated shape was constructed to check feasibility and accuracy of modular coil production. Heat run test was performed to check temperature increase of conductors, and the capability of 1 T operation was confirmed. Construction of actual modular coils and vacuum vessel has begun since 2020.

In this paper, recent progress of the physics, the engineering design, and construction status of the CFQS are presented.

Advantage of quasi-axisymmetry Helical **Tokamak** Requiring plasma current No inductive plasma current \rightarrow Major disruption, pulse operation \rightarrow Steady-state operation capability Reduced neoclassical transport and good particle orbit by Large neoclassical transport by axisymmetry ripple diffusion **Quasi-axisymmetry Both advantageous** points are combined Quasi-axisymmetric stellarator has attractive features for future

Bootstrap current is calculated by BOOTSJ code based on Shaing's analytic formula (K.C. Shaing, Physics of fluids B 1 (1989) 1663). (kA Relatively flat density profile, $n=n_0(1-0.8 \text{ s}+1.3 \text{ s}^2-1.5 \text{ s}^2)$ s³) are assumed.

At the volume averaged beta of 1.2 %, current of about 25 kA is expected which makes a significant effect on equilibrium.

A. Shimizu et al., Plasma and Fusion Research 13 (2018) 3403123. X. Wang et al., Nuclear fusion 61 (2021) 036021.

Finite beta equilibrium

MHD equilibrium with finite beta considering bootstrap current is calculated by HINT2.

Good magnetic surface is sustained, at least up to the volume averaged beta of 1.2 %, which is attainable by NBI.

impregnation

Completion of mock-up modular coil construction

Dimension measurement of coil conductor by laser tracker

Maximum deviation from CAD model is 3.3 mm.

Model calculation suggests that the effect of this level deviation on the magnetic surface is not

A. Shimizu et al., Plasma and Fusion Research 14 (2019) 3403151.

April, 2020

• Heat run test of mock-up coil was performed. Current of 1 kA for 38 s was applied. Time evolution of temperature of cooling water and coil surface were measured.

• Expected cooling performance was achieved, therefore, 4.34 kA current for 2 s can be conducted

Quasi-axisymmetric devices Concept of quasi-axisymmetry was proposed by J. Nührenberg (1994) and P. Garabedian (1996). 1990's~2000's NCSX PPPL *N*=3 *R*=1.4 m *A_p*=4.4 CHS-qa NIFS *N*=2 *R*=1.5 m *A*_p=3.2 2010's **ESTELL University of Lorraine** CFQS NIFS and SWJTU $N=2 R=1.4 \text{ m} A_{p}=5.0$ *N*=2 *R*=1.0 m *A_p*=4.0 There is no operational quasi-axisymmetric stellarator in the world. **Research target of CFQS experiments** Main Parameters $B_t = 1$ T, R = 1 m, $\langle a \rangle = 0.25$ m, $A_p = 4$, $N_p = 2$ ECH: 54.5 GHz 450 kW NBI: 20~40 kV 30 A 1 MW Topics • Demonstration of good confinement with QA configuration. • Achievement of Improved confinement mode like H-mode to suppress turbulent driven anomalous transport. Experimental study of turbulence and transport barrier formation physics. Confirmation of stable MHD equilibrium by magnetic well property. Experimental study of bootstrap current, its effect on MHD stability and magnetic configuration.

• High energy particle physics in QA with NBI.

VPI mould

- Winding conductor
- **Current status of vacuum vessel** manufacturing

Construction of vacuum vessel (VV) of 1/4 toroidal section is being constructed with

• Feasibility study of divertor configuration.

CFQS TEAM, "NIFS-SWJTU JOINT PROJECT FOR CFQS - PHYSICS AND ENGINEERING DESIGN VER. 3.1." **RESEARCH REPORT NIFS-PROC Series : NIFS-PROC-119 Jan. 25, 2021.**

