

Achievement of DC 1 MV insulation in high-voltage power supply for ITER Neutral Beam Test Facility

¹⁾Hiroyuki Tobari, ¹⁾M. Kashiwagi, ¹⁾K. Watanabe, ¹⁾T. Maejima, ¹⁾Y. Yamashita, ¹⁾A. Kojima, ¹⁾M. Dairaku, ¹⁾S. Sasaki, ¹⁾N. Shibata, ¹⁾J. Hiratsuka, ¹⁾S. Konno, ²⁾M. Boldrin, ²⁾L. Zanotto, ²⁾S. Dal Bello, ²⁾V. Toigo , ³⁾M. Simon and ⁴⁾H. Decamps

1) National Institutes for Quantum and Radiological Science and Technology (QST), 801-1 Mukouyama, Naka 311-0193, Japan 2) Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova, Italy 3) Fusion for Energy, C/o Josep Pla 2, E-08019 Barcelona, Spain

4) ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, F-13067 St. Paul-lez-Durance, France

*Corresponding author: tobari.hiroyuki@qst.go.jp

ſ			2015 2016	6 2017 2	018 20	19 2020	2021	2022	2023 2	024 2025	2026	2027
I	(Summary)	NBTF/SPIDER	Constr	ruction	FEC2	2018	FEC2	2020				
I	Construction of the ITER Neutral Beam Test Facility (NBTF) in Padova, Italy to verify 1 MeV, 40 ampere D ⁻ beam				E	xperime	nt					
	acceleration technology has been completed.	NBTF/MITICA	Manufacturi	ng 🙂 Con	npleted	!!		1 MV g	[Integ] generatior	rated test) n (no load)	test	
I	DC high-voltage test with Testing Power Supply (TPS) as a commissioning has been successfully completed in	Power supply	shipp	oing 🙂	comple	ted !!		1 MV, 6 Break o	60 A outp down test	ut test with t	dummy	load
I	November 2019. Insulation design of all components has been confirmed.		inst	allation	con	pleted !!	•					
	Integrated test with the invertor and the DC Generator (DCG) has started making full use of the remote/real-time				HV te	est 🗙 Inte	eg. st		ΜΙΤΙ	CAexp	erime	nt
	communication botwoon, Japan and Italy, Eunctionality and current output from the combined system of invertor and) Noleted	"' (\	Fee	dback				

COMMUNICATION DELWEEN JAPAN AND ITALY. I UNCTIONALLY AND CUTENT OUTPUT NOM THE COMDINED SYSTEM OF INVERTED AND DCG successfully was confirmed for the first time.

ITER HNB ufacturing, shipping PA of HNB PS First plasma 🛧 Power supply

Progress on DC high-voltage test with TPS

Verification of insulation design **≠** DC long-pulse insulation **AC** insulation (Short-pulse) time Resistive voltage Capacitive voltage evolution distribution distribution

- higher resistivity.
- material is the critical parameter.

winding winding

on lest sequence

To verify the insulation design and also risk mitigation, the five tests were performed step by step by dividing the test area.

Progress on Integrated power test

- As the final site acceptance test, the integrated power test with the inverter system and DCG, DCF and TLs has started.
- Technical assistance on site by JADA/QST and the manufacturer was absolutely essential for the assembly of the complicated power supply system and testing. However, due to COVID-19 pandemic, the on-site joint work is difficult to perform.

ent of remote activity management

Communication with the on-site SV as liaison for JADA Detail procedure document with drawing/photo to identify the work procedure and area

> ■ 1 instruction \rightarrow 1 action \rightarrow 1 confirmation Real-time communication with video

All high-voltage tests have been successfully completed in Nov 2019. \rightarrow Verification of insulation design combined with oil, gas and vacuum insulation

Remote activity management has been applied to the functional (feedback) test.

