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Background and Introduction

Shattered pellet injection (SPI) has been selected as
the baseline disruption mitigation (DM) system for
ITER. SPI utilizes cryogenic cooling to desublimate low
pressure (<100 mbar) gases onto a cold zone within a
pipe gun barrel, forming a cylindrical pellet. Pellets are
dislodged from the barrel and accelerated using either
a gas driven mechanical punch or high-pressure light-
gas delivered by a fast-opening valve. SPI technology is
currently deployed and operational on DIII-D, JET, and
KSTAR. These SPI systems are used in experiments for
physics scaling of ITER thermal mitigation and runaway
electron dissipation/avoidance. The pellet sizes used
for these machines are in the range of 4 to 12.5 mm in
diameter with length to diameter ratios (L/D) of ~1.5.
The current plan for ITER SPI is to utilize pellets that
are 28.5 mm in diameter with an L/D of ~2. The large
pellet sizes, high steady-state magnetic fields, and
limitations of operating in a radiation environment
render much of the current technology unusable. In
addition to technology improvements, a deeper
understanding of pellet material properties, formation,
and release is being developed for implementation in
future SPI designs, specifically ITER.

Pellet Formation Studies

Formation of large pellets is not frequently done
during a tokamak shot cycle as most SPIs installed on
machines use an average pellet size of 8 mm in
diameter. The 28.5 mm diameter pellets on ITER pose
a timing issue for shot cycle timing on ITER. The
current constraint is 30 minutes for pellet formation.

ITER SPI Test Facility

A liquid helium cooled shattered pellet injection
system has been designed and built to test the
technology for the ITER SPI system, to determine
pellet formation techniques, and to assess the
survivability and downstream fragmentation of ITER
size pellets. The system design contains a barrel with
similar sizes/flow paths as the current ITER design. A
LN2 pre-cooler is used to cool the incoming pellet gas
prior to reaching the barrel cold zone to decrease
pellet forming times. The downstream shatter tank is
used to for fast camera imaging to quantify pellet flight
dispersion or fragment plume characteristics.
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Due to poor thermal conduction, formation of pure
hydrogen pellets requires an extensive amount of
time. Tests were conducted to determine pellet
surface temperature by closing the gas feed and
measuring the vapor pressure, correlating it with
pellet surface temperature.

Hydrogen Pellet

Flyer Plate Valve Operation

A propellant valve capable of operating in an ITER
environment has been designed and tested. The valve
operates by energizing a coil which induces eddy
currents in an aluminum plate, which generates a
repulsive force to open the valve [4]. The images and
plots below show a CAD model of the valve, general
schematics of the power supply, and the operational
space of the valve.

Pellet Fragmentation

High speed videos were captured of the fragment
plumes generated by deuterium pellets impacting two
shatter tube geometries; one with a square cross
section and another with a circular cross section.
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Pellet Dispersion Characterization

As pellets exit a barrel into free-flight the propellant
gas used to accelerate the pellet will induce a non-
uniform force on the rear of the pellet. This results in
the pellet veering from a perfectly straight flight path.
This dispersion has been characterized for multiple
28.5 mm diameter deuterium pellets. Dispersion is
thought to scale inversely with mass; thus, hydrogen
pellets will experience more drastic dispersion due to
its lower mass, compared to deuterium.

Pellet Release Forces

Pellet material, temperature, and L/D are all factors in
the amount of force need to release pellets from the
cold zone of an SPI barrel. Forces required to dislodge
pellets over a range of SPI relevant temperatures were
measured in [1] using the apparatus shown below.

CFD modeling was conducted to determine the
amount of force applied to the pellet by the ITER
prototype valve with varying breech lengths for 40 and
60 bar propellant pressure [2].

Shot 71 – 2 L/D – Fired at 14.45 K

– Dispersion – 0.34 degrees

– Speed – 255 m/s

– Prop Gas Used: 1.53 Bar-L

Shot 72 – 2 L/D – Fired at 14.38 K

– Dispersion – 0.52 degrees

– Speed – 266 m/s

– Prop Gas Used: 2.787 Bar-L

Shot 77 – 2 L/D – Fired at ~15 K

– Dispersion – 0.23 degrees

– Speed – 190 m/s 

– Prop Gas Used: 0.86 Bar-L

Shot 80 – 2 L/D – Fired at ~15 K

– Dispersion – 0.52 degrees

– Speed –250 m/s

– Prop Gas Used: 2.757 Bar-L

Shot 81 – 1.85 L/D – Fired at ~15 K

– Dispersion – 0.34 degrees

– Speed – 285 m/s

– Prop Gas Used: 2.71 Bar-L
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Measured Shear Strengths

These forces can be scaled based on the L/D ratio of
the pellet. A delicate balance is required to dislodge
the pellet without fracturing it as it is dislodged from
the cold zone. Currently, the ITER Test Facility operates
a propellant valve at 60 bar, which is not adequate to
release deuterium pellets at 8K as the force is not
sustained for an adequate amount of time for release.
This operating point also catastrophically fragments
pure hydrogen pellets as they release from the cold
zone.

Future R&D Plans

• Optimize hydrogen and hydrogen-neon mixture

pellet formation, release, and fragmentation

• Measure threshold speeds of small hydrogen and

hydrogen-neon mixture pellets

• Measure dispersion of large hydrogen pellets

• Characterize large pellet fragmentation

• Test flyer plate valve in ITER like B-field to qualify

lifecycle survivability

A model for fragmentation is presented in [3], but
there is not suitable experimental data to scale to
hydrogen pellets. Analysis can only be conducted using
deuterium pellets. Fast videos are currently being
analyzed to compare to the model shown below.
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