Progress in physics and system integration of ITER Core X-Ray Crystal Spectrometer ID: 1100

Amro Bader¹, Zhifeng Cheng^{2, 3*}, Maarten De Bock³, Robin Barnsley³, Philippe Lorriere⁴, Novimir Pablant⁵, Fabio Costa⁶, Joao Soeiro⁶, Ines Bola⁶, Yevgeniy Yakusevich⁷

1. Vitrociset, Via Tiburtina, 1020, 00156 Roma RM; 2. Huazhong University of Science and Technology, Wuhan, 430074, China; 3. ITER Organization, Route De Vinon-sur-Verdon, CS 90 046, 13067, St. Paul-lez-Durance, France; 4. Assystem Engineer. & Op. Serv. SAS, 84120 Pertuis, France; 5. Princeton, NJ, United States of America; 6. Active Space Technologies S.A. 3045-508, Coimbra, Portugal; 7. UC Santa Barbara, Santa Barbara, CA, USA

ROLE OF ITER CORE XRCS

- Measuring line emission from highly ionized heavy element (impurity) Measurement
 - Ion temperature, Plasma rotation —
 - Doppler shift and broadening ____
- Spatial coverage: 0-0.85a

• Purpose

- To support advanced plasma control and improve understanding of plasma transport in ____ burning plasma
- Categorized as EE (Essential for execution of the IRP experimental programme) ____

BACKGROUND

EP#2

• Original location and layout at EP#17

- Imaging concept with 3 continuous views in predominantly poloidal plane
- Spectral diffraction in toroidal direction at closure plate location

SYSTEM DESIGN AND LAYOUT

- Pre-reflectors in PP near to DFW, and analysing crystals in rear of ISS behind Bioshield
- 4 sets * 4 sight lines (Xe⁴⁴⁺ and Xe⁵¹⁺) + 1 set * 3 sight lines (W⁶⁴⁺)
 - Each set composed with 3 pre-reflectors (or 2 for W⁶⁴⁺) and one straight as reference/flex channel
 - Xe^{44+} and Xe^{51+} sets follow same path after pre-reflection \Leftrightarrow only 3 vacuum extensions
 - Sight lines 'converge' in DFW to minimize and simplify cut-out

Present location at EP#2

- Sandwiched by two DMS units. Narrow but enough space toroidally —
- Previous layout no longer fits the space in EP02. A radial layout is now assumed (see right)

Red and Magenta sights: Xe⁴⁴⁺ 0.272nm for 0.5~0.85a Blue and Yellow sights: Xe⁵¹⁺ 0.219nm for 0~0.55a **Green** sight: W⁶⁴⁺ 0.135nm for 0~0.34a

PERFORMANCE ASSESSMENT

- Analytical-raytracing mixed code XRSA developed to evaluate double-reflection xray spectral system; Validated with full raytracing code XICSRT
- Real coordinates adopted

R (m)

• Images on PILATUS detector is simulated, which are used to evaluate the band pass and spectral resolution evaluation

tú 0.⊿

2.21

600

FWHM~0.03Å

2.71 2.72

400

200

5 250 Pixel

25

0

0

200

FWHM~0.03Å

LINE AND CRYSTAL SELECTION

- Bragg Angle of Pre-reflector in the range of 10° (to view central region) to 35° (to view outer region) according to ITER Port Plug dimension
- Bragg Angle of crystal ~50° for better spatial resolution

• Germanium crystals are chosen due to relatively wide rocking curve

Impurity /ionization	Lines		Effective region	Reflector Features (HOPG 0.4°)		Crystal Features	
	Energy (keV)	Wavelength (nm)		Bragg Angle (degrees)	R _p ; FWHM μrad (from XOP)	Bragg Angle (degrees)	R _p ; FWHM μrad
Fe 24+ (He- like)	6.70	0.18503	0.5a <r<0.95a< td=""><td>16.041 (0 0 2)</td><td>0.37; 9192</td><td>50.57 Qtz (2 2 -4 1)</td><td>0.7; 5.92</td></r<0.95a<>	16.041 (0 0 2)	0.37; 9192	50.57 Qtz (2 2 -4 1)	0.7; 5.92
Fe 25+ (H- like)	6.95	0.1784	r<0.9a	15.45 (0 0 2) 32.2 (0 0 4)	0.38; 9240 0.14; 7747	50.57 Ge (2 2 4)	0.9; 40.16
Kr 34+ (He- like)	13.11	0.0946	r<0.9a	8.12 (0 0 2) 16.4 (0 0 4) 25.08 (0 0 6)	0.48; 10040 0.2; 8094 0.09; 7463	49.61 Ge (3 5 7) 51.65 Ge (4 6 6) 55 Ge (4 4 8)	1; 3.69 0.6; 5 0.6; 4.8
Kr 35+ (H-like)	13.43	0.0923	r<0.6a(0.4a)	7.92 (0 0 2)	0.48; 10070	49.92 Ge (4 6 6)	0.6; 4.8
Xe 44+ (Ne- like)	4.56	0.272	0.6a <r<0.9a< th=""><th>23.97 (0 0 2)</th><th>0.31; 8765</th><th>52.88 Ge (1 1 3)</th><th>0.78; 90.3</th></r<0.9a<>	23.97 (0 0 2)	0.31; 8765	52.88 Ge (1 1 3)	0.78; 90.3
Xe 51+ (Li- like)	5.67	0.219	r<0.6a	19.05 (0 0 2)	0.34; 8990	50.6 Ge (0 0 4)	0.93; 71.7
W 46+ (Ni- like)	2.19	0.567	0.75a <r<0.95a< td=""><td>57.86 (0 0 2)</td><td>0.28; 8581</td><td>48.85 ADP (0 2 0)</td><td>0.6; 100.74</td></r<0.95a<>	57.86 (0 0 2)	0.28; 8581	48.85 ADP (0 2 0)	0.6; 100.74
W 64+ (Ne- like)	9.16	0.1354	r<0.6a (0.5a)	11.67 (0 0 2)	0.42; 9597	51.69 Ge (3 3 5)	0.86; 11.4

and outer region respectively

behind bio-shield, with pre-reflector in port plug

present space allocation

- Analytical-raytracing mixed code XRSA is developed aiding design \checkmark optimization and performance assessment
- ✓ System band pass and spectral resolution are evaluated using XRSA

✓ X-ray spectrometers are moved to the back part of interspace structure

✓ Lines from Xe⁵¹⁺ and Xe⁴⁴⁺ are chosen for the measurement, available at core

REFERENCES

- Beiersdorfer, P., Clementson, J., Dunn, J., Gu, M.F., Morris, K., Podpaly, Y., Wang, E., Bitter, M., Feder, R., Hill, K.W. and Johnson, D., 2010. The ITER core imaging x-ray spectrometer. Journal of Physics B: Atomic, *Molecular and Optical Physics*, *43*(14), p.144008.
- Yakusevich, Y., Pablant, N., Kring, J., Cheng, Z. and DeBock, M., 2020. Simulated Validation of the ITER XRCS Core using Ray-Tracing Algorithm. Bulletin of the American Physical Society.

*Zhifeng.Cheng@iter.org

250

25

0

0

8 8

FWHM~0.032Å

2.73

 λ (Å)

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.