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ROLE OF ITER CORE XRCS SYSTEM DESIGN AND LAYOUT

e Measuring line emission from highly ionized heavy element (impurity) e Pre-reflectors in PP near to DFW, and analysing crystals in rear of ISS behind Bio-
e Measurement shield

— lon temperature, Plasma rotation 4 sets * 4 sight lines (Xe*** and Xe>!*) + 1 set * 3 sight lines (W%

— Doppler shift and broadening —  Each set composed with 3 pre-reflectors (or 2 for W84*) and one straight as reference/flex
e Spatial coverage: 0-0.85a channel
e Purpose —  Xe** and Xe>!*sets follow same path after pre-reflection < only 3 vacuum extensions

— To support advanced plasma control and improve understanding of plasma transport in — Sight lines ‘converge’ in DFW to minimize and simplify cut-out

burning plasma
— Categorized as EE (Essential for execution of the IRP experimental programme) H\PPP,G\ﬁIm‘ - Reflector design All Sights are converged to

b | substrate ~300 micro-meter thick two detectors
R HOPG film (Highly Oriented
N Pyrolytic Graphite) coated
/‘ \\} on a substrate and fixed on
Massive bloc support @ massive bloc support.

BACKGROUND

e Original location and layout at EP#17
— Imaging concept with 3 continuous views in predominantly poloidal plane
— Spectral diffraction in toroidal direction at closure plate location

e Present location at EP#2
— Sandwiched by two DMS units. Narrow but enough space toroidally
— Previous layout no longer fits the space in EPO2. A radial layout is now assumed (see right)
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Red and Magenta sights: Xe*** 0.272nm for 0.5~0.85a
Blue and sights: Xe>1* 0.219nm for 0~0.55a
Green sight: W°* 0.135nm for 0~0.34a
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PERFORMANCE ASSESSMENT

e Analytical-raytracing mixed code XRSA developed to evaluate double-reflection x-
ray spectral system; Validated with full raytracing code XICSRT

e Real coordinates adopted

e|mages on PILATUS detector is simulated, which are used to evaluate the band
pass and spectral resolution evaluation

DMS injectors right hand side

> EP#Z DMS injectors left hand si:. g4
Image width of single wavelength ~ 1.5 pixels = Spectral resolution: A/AA~10000

CHALLENGES SOLUTION
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Meridional plane (Dispersion) in vertical and sagittal
plane (Spatial resolution) in horizontal

— Longer Rowland radius

e Higher spectral resolution x107° Yellow Sights %107 Blue Sights | % 10°  Magenta Sights %10 Red Sights

Discrete wavelengths’ image on detector with real pixel size

Sight cones to
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e Easier for satisfying the sagittal focus requirement
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— Compatible for the system integration
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Effective etendue for each sight
Band pass FWHM ~ 0.03A; Efficiency of straight sights is ~ 1.5 times higher
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To detector

Several pre-reflectors to deflect x-ray

— HOPG for wider rocking curve (Band-pass)
*~(One analyzing crystal identifying SU M MARY

several discrete pre-reflectors

v ITER XRCS Core has been redesigned by introducing pre-reflectors to fit the
LINE AND CRYSTAL SELECTION present space allocation

v X-ray spectrometers are moved to the back part of interspace structure
behind bio-shield, with pre-reflector in port plug

e Bragg Angle of Pre-reflector in the range of 10° (to view central region) to 35°
(to view outer region) according to ITER Port Plug dimension

* Bragg Angle of crystal ~50° for better spatial resolution v' Lines from Xe®!* and Xe** are chosen for the measurement, available at core
e Germanium crystals are chosen due to relatively wide rocking curve and outer region respectively
v Analytical-raytracing mixed code XRSA is developed aiding design
- optimization and performance assessment
S S S| MU MM System band pass and spectral esolution are evaluated using XRSA
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