National Spherical Torus eXperiment Upgrade

NSTX-U Recovery Project Progress Towards First Plasma

S. Gerhardt for the NSTX-U Recovery Team

Low aspect ratio "Spherical Torus / Tokamak" (ST) vital for toroidal science and fusion energy development

- ST accesses unique regime of high β_{T}
 - Fundamental changes in nature of turbulence, MHD stability
 Enhanced electromagnetic and super-Alfvénic effects
 - STs can more easily measure electron-scale turbulence
 Important transport channel at all aspect ratio
 - Neutral beam fast-ions in present STs mimic DT α populations
 Study burning plasma science
- Expanded parameter space crucial for model validation
- If physics results favorable, STs could provide more economical fusion development & energy systems
 - Potentially reduced magnet and device size and cost

Five year research plan developed by all collaborating institutions and approved by DOE Available at: https://nstx-u.pppl.gov

Electromagnetic turbulence

ITER

Pilot Plant

NSTX >>> NSTX-U: Two major upgrades

→ Unique regime Study new transport and stability physics

Essential for any future steady-state ST

NSTX-U and MAST-U are presently the most capable devices in the world-wide ST research program

Similar features:

- Major radius R = 0.8-1m
- Plasma current up to 2MA
- Pulse durations $1s \rightarrow up$ to 5s
- Strong neutral beam heating

Having both NSTX-U and **MAST-U** important to confirm unique ST results

MAST-U (UK)

Complementary Research:

Core emphasis

Boundary emphasis

- Higher magnetic field, aux. power (NB+RF), pressure 2× higher self-driven current

- Highly-flexible "long-leg" divertor for power exhaust research
- Off-midplane 3D magnetic field coils

NSTX-U

Project Has Finished Design and Started Fabrication/Installation

- NSTX-Upgrade Project new magnets and heating systems added to legacy NSTX facility (2010-2015)
- A number of issues hindered NSTX-U operations in FY15&16.
 - Culminated in June 2016 operations halt due to an internal short in coil
- Extent of Condition (2017) \rightarrow Defined Recovery Project scope
 - <u>Objective is to achieve a high-reliability user facility</u> $I_p=2$ MA, $B_T=1$ T, $P_{ini}=10$ MW, $t_{pulse}=5$ sec
- Project Baseline Review (August 2019)
 - Defined the Project Baseline
 - Released specific long-lead scope elements for fabrication
- Project Final Design Review (March 2020)
 - Validation of the final design by external committee
- Project CDE-3 Review (May 2020)
 - Released the balance of the Project for fabrication/installation

NSTX-U Recovery is Now Squarely in the Construction/Installation

Phase of the Project

NSTX-U Within the Test Cell (2016)

Significant Project Scope Resides in the Machine Core

Inner PF Coils - Design Parameters

					PF-1b
		PF-1a	PF-1b	PF-1c	
Coil Terminal to Terminal Voltage	kV	2.03	2.03	2.03	windings
Current	kA	19.7	20.0	20.2	
# of Layers		4	2	2	G10 Transition
# of Turns		61	20	16	Piece
Turn-to-Turn Voltage	V	33	101	127	G10 helical spacers
Turn-to-Turn Insulation Safety Factor		2168	709	567	used to set the winding
Layer-to-Layer Voltage	V	1013	2026	2026	windings
Layer-to-Layer Safety Factor		76	38	38	lead flags
Max Turn-to-Ground Voltage	V	2026	4052	4052	G10 Transition Piece
Turn-to-Ground Safety Factor		54	27	27	PF-1c

NSTX-U

All Coils Are Complete!

- Prototype coils fabricated by 4 vendors, including PPPL.
- Electrical tests, destructive testing and inspection, to assess quality between vendors
- Contract awarded to Sigmaphi (Fr)
- All coils built and delivered

Magnets Pass Comprehensive Electrical Tests to Ensure Good Turn-to-Turn Insulation

Progress on NSTX-U Recovery (IAEA-FEC)

Casing Manufacture

CS Casing provides:

- The high-field side vacuum boundary
- Structural load path for numerous coils
- The mounting surface for plasma facing components
- Heating/cooling function
- Alignment of coils and PFCs

Loaded by many effects

- Electromagnetic loads on magnets
- Disruption loads vertical from eddy currents and sideways from halo currents
 <u>Being fabricated from Inconel 625</u>
 - about 50% stronger than 316SS
 - 2x as resistive

Casing Manufacture

Heat Transfer Plate and Heat Transfer Tubing Fabrication Complete

Provide heat removal for 12 MW/5s pulses every 20 minutes Will be installed on the Casing as part of the Final Assembly

Magnet Supports are Nearing Completion PF-1a and PF-1b

PF-1a or -1b Assembly: Slings provide preload to minimize insulation tensile strains

Representative Sling/Flange Configuration

Progress on NSTX-U Recovery (IAEA-FEC)

Passive Plates are Used to Control the Plasma Stability

- 1" thick Cu plates, mounted to the vessel wall via bracketry
- Slow vertical displacements growth →
 Facilitate achieving high elongation.
- Pressure-driven external kink is stabilized, resulting in the more slowly growing resistive wall mode.
 - Kinetic effects or feedback with 3D fields can stabilize the RWM
- Critical to the high- β research program

<u>**Concern</u>**: Huge loads on the passive plates, and by extension their brackets, during disruptions</u>

NSTX-U

Progress on NSTX-U Recovery (IAEA-FEC)

Passive Plates Brackets and He Lines are Being Reinforced

- With larger NSTX-U loads at I_p=2 MA, B_T=1 MA, welds in existing brackets were not projected to survive, He lines had unacceptable currents
- Making targeted modifications to improve structural, improve current carrying capability:
 - He line supports
 - Plate stiffeners
 - Improved brackets
 - Improved welds of legacy brackets to vessel
 - Current shunts to better define current paths

INSTX-U

Passive Plates - Progress

Plasma Facing Components Have to Meet Demanding Requirements - T

- Halo current loads ~800 lbs on divertor PFCs
- Large heat fluxes over a range of incident field line angles
 - Large heat fluxes in excess of q₁~ 50 MW/m² expected to be possible in LSN scenarios designed to compress flux.
- Sublimation accelerates above ~1600 C - will contaminate the plasma

Plasma Facing Components Have to Meet Demanding Requirements - Stress

- Halo current loads ~800 lbs on divertor PFCs
- Large heat fluxes over a range of incident field line angles
 - Large heat fluxes in excess of q_⊥~ 50 MW/m² expected to be possible in LSN scenarios designed to compress flux.

Plasma Facing Components are Moving Through Fabrication

Tile Summary Status					
	# done	# parts			
Tiles	1021	1465			
Metals	4163	4612			

Progress on NSTX-U Recovery (IAEA-FEC)

21

Plasma Facing Components are Moving **Through Fabrication - Low Heat Flux**

Diagnostics Being Fabricated for Installation in PFC Tiles

Mirnov Sensors

- use bare copper in order to achieve simultaneous high temperature and vacuum requirements
- Mandrels have fine grooves to locating the windings
- High temperature cement and fiberglass sleeving for insulation

Rail Langmuir Probe

- Designed to fit in small slots in gaps between castellations
- Provides temperature data while maintaining high heat flux capability
- Arrays in all high heat flux tile regions

Test Cell Nuclear Shielding Improvements are Complete

Scope:

- Construct a labyrinth at the test cell southeast door
- Improve shielding at large wall penetrations

Shielding validated by before-and-after challenges with a portable D-T neutron generator

NSTX-U

Other Safety Related Systems on Project

NTC Access Control

- Constructing a redundant and fail safe access control system for the test cell and other experimental areas
- Upgrade of medium-voltage breakers to have a fail-safe trip mechanisms
- Satisfies the requirements of IEC 61508/61511

Oxygen Deficiency Hazard Mitigation

Adding redundant alarming ODH monitors to areas with significant risk of ODH condition.
Adding additional ventilation fans to cryogenic areas to reduce probability of small leaks creating ODH conditions

Along with shielding, these systems are critical safety upgrades that bring NSTX-U to the standards expected by the US accelerator community --- NSTX-U is classified as an accelerator within the DOE

Project Schedule

- COVID-19 has resulted in Project delays
 - PPPL curtailed on-site operations March-June of 2020
 - On-site construction and fabrication activities since July 2020 done with limits on on-site staff, various COVID controls
 - Numerous and various vendor impacts
- Near-term critical path is set by the CS casing manufacture
 - Tiles, passive plates, and assembly of coils in slings are all near-critical path
- Once casing is delivered, the critical path shifts to machine reassembly followed by commissioning.
- Now anticipating first plasma in the later half of CY2022 August of 2022 early finish

Summary

- Project is well into the fabrication/installation phase
 - Magnet fabrication is complete
 - Test cell nuclear shielding improvements complete
 - CS Casing, PFCs, passive plate components all making strong progress
 - Passive plate in-vessel work ongoing
- Anticipating first plasma in the later half of CY2022