The ITER plasma termination phase: physics constraints on control

F.M. Poli¹, E. Fredrickson¹, M. Podesta¹, J. Berkery², E-H Kim¹, N. Bertelli¹

¹Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

²department of Applied Physics, Columbia University, New York, NY 10027, USA

Simulations of the ITER termination phase need to satisfy all operational limits

- Power step-down
 - Shut-down auxiliary power and fueling => IC coupling, EC, NBI shine-through, fast ions
 - Controlled exit from burn and H-mode => radial position control
- Maintain control of impurities/radiation => seedling, core electron heating
- Current ramp-down
- Avoid vertical instability due to increase of I_i (shape+heating) => reduce cross-section
- Avoid additional flux consumption => reduce plasma current
- Stay in X-point as long as possible to maintain particle and power handling => ~2MA

Use a parametrization for the edge as boundary condition for core transport

TRANSP calculates transport and outfluxes

core output (@ ψ =1) edge input Total input power P_{SOL} DT ion outflux $\Gamma_{\text{DT,sep}}$ Helium ion outflux $\Gamma_{\text{He,sep}}$ $\xi_{ei} = P_e / P_i$

Edge input – external control Pumping speed S_{ENG}

SOLPS parametrization gives values at separatrix

edge output (@ ψ =1) Core+pedestal input Separatrix temperature T_{i,sep} T_{e,sep} Separatrix density n_{sep} n_{He,sep} Neutral influxes $\Gamma_{\text{DT,n,sep}} \Gamma_{\text{He,n,sep}}$ Neutral temperature T_{DT,sep} T_{He,sep} Impurity concentration

Core input – external control Auxiliary heating power P_{aux}

- PF/CS coil limits
- Vertical position control
 - reduce elongation to keep li low
- Shape/gaps control
 - Plasma diverted down to 2MA
 - Radial mid-plane gap > 7 cm
 - Min. gap between inner/outer separatrix > 4cm

Initial assessment of H-L transition time

H-L transition at 15MA

- Let the controller do everything
- No NTMs in ramp-down

Risk assessment => high current disruptions

step-down everything together \Rightarrow in what sequence? what time scales? \Rightarrow Compatibility with DMS response time?

Limits of these simulations:

Do not include ELM regimes

PRINCETON

LABORATORY

- H-L transition based on scaling
- Density peaking not realistic (either prescribed or based on semi-empirical)
- Uncertainties on dynamical variation of the Greenwald fraction

This work is supported in part by the U.S. Department of Energy, Office of Fusion Energy Sciences under contract number DE-AC02-09CH11466. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. PLASMA PHYSICS

q=2 surface drifts => need to track (m,n)

Compatible with steering capabilities, but what about \Rightarrow magnetic equilibrium response

Conclusions from initial assessment with reduced models and 0D parametrization:

- H-L transition at higher current is more controllable than transition at lower current
- Because is minimizes the number of combined operations for the PCS
- It minimizes risks with loss of NTM control and ELM heat loads