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BACKGROUND ON NONLINEAR BURN CONTROLIN ITER WITH ACTUATOR ALLOCATION

The operation of ITER will require robust regulation of the plasma temperature and density. Using Lyapunov techniques, a nonlinear controller
was synthesized from a two-temperature model that contains uncertainty in the fraction of alpha-particle power deposited into the plasma ions
and other complex phenomena. The controller determines virtual control etforts (plasma heating and fueling) that will drive the plasma to
desired targets. An adaptive control allocator optimally maps these virtual control etfforts to ITER’s actuators (e.g., neutral beam injectors and
pellet injectors) despite uncertainty in the actuator efficiencies, the fraction of neutral beam heating deposited into the plasma ions, and the
tritium concentrations of the fueling pellets. Furthermore, the allocator considers uncertain actuator dynamics (specifically actuation lags).
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e The burning plasma dynamics consists of six (measured) states: the ion energy E;, the electron energy I, the alpha-particle density n,,
the deuterium density np, the tritium density np, and the impurity density n;. Uncertain parameters for the alpha-particle ion-heating
fraction, the wall deuterium-tritium recycling, the impurity sputtering and the plasma confinement quality are lumped into 0,,.

e The high-level burn controller determines the virtual control efforts that will stabilize the target equilibrium of the nonlinear plasma system.
The four virtual control efforts are the auxiliary ion heating P, ;, the auxiliary electron heating P, ., the deuterium fueling Sp, and the

tritium fueling Sp. Adaptive laws provide estimate 6;, to handle uncertainty in the plasma conditions.

e The optimal control allocator receives the requested stabilizing virtual control efforts v; from the high-level burn controller. Using dynamic
update laws, it determines the optimal actuator etforts u4 for reproducing v,. The six actuator efforts u are the heating from the ion cyclotron
actuator P;., the heating from the electron cyclotron actuator .., the heating from the two neutral beam injection actuators P,;;1 and P, p:2,
the fueling from the deuterium pellet injection actuator Sp__,, and the fueling from the deuterium-tritium pellet injection actuator Spr, ;.

e The low-level actuator controller receives the optimal actuator efforts uy4 from the allocator. It determines what commands u.,,q4 should be
sent to the actuators in order to track ug4 despite the actuator dynamics. The actuator dynamics include lags in the actuation and uncertain
parameters 6,,. These dynamic equations output the actual actuator efforts u that are translated back into virtual control efforts v through
an effector model. These heating and fueling efforts v are deposited into the plasma system. The effector model contains uncertainty 6. in
the actuator efficiencies, the neutral beam ion-heating fraction, and the tritium concentration of the fueling pellets. The adaptive allocator

generates estimates . and 6,, to handle the aforementioned uncertainty. The goal of the allocator is to minimize |v — v,].
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SIMULATION STUDY TO ILLUSTRATE PERFORMANCE OF CONTROLLER AND ALLOCATOR
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