Scenario Development and Exploration of Operating Space for CFETR Plasma

Jiale Chen1, Vincent Chan2, Chengxi Zhou3, Yiren Zhu3, Guoqiang Li4, Qilong Ren1 and CFETR physics team
1Institute of Plasma Physics, CAS
2Department of Engineering and Applied Physics, USTC
3State Key Laboratory of Advanced Electromagnetic Engineering and Technology, HUST
EMAIL: jiale.chen@ipp.ac.cn

ABSTRACT

• Chinese Fusion Engineering Testing Reactor (CFETR) is aimed to bridge the gaps between ITER and the first commercial fusion power plant.
• Target plasma at flattop phase is modeled by 1.5-D simulations based on physics theories and efforts are made to optimize the performance of the scenarios.
• A hybrid scenario with flat q profile in the deep core and a steady-state scenario with local reversed shear at mid-radius are developed.

OUTCOME: Baseline case for CFETR hybrid scenario

• Neutral beams and EC waves
 • 1 MeV beams
 • 250 GHz EC waves
• Enhanced confinement
 • Flat q profile in core
 • Including EM stabilization effect

Comparison of plasma performance between different H&CD for CFETR hybrid scenarios [2]

<table>
<thead>
<tr>
<th>Case Note</th>
<th>Baseline(EC)</th>
<th>LHCD</th>
<th>ICCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{NBM} (MW)</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>P_{EC} (MW)</td>
<td>50</td>
<td>↓40</td>
<td>↓30</td>
</tr>
<tr>
<td>P_{UL} (MW)</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>P_{IC} (MW)</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>f_{BS}</td>
<td>0.45</td>
<td>0.41</td>
<td>0.4</td>
</tr>
<tr>
<td>H_{BHY02}</td>
<td>1.14</td>
<td>1.12</td>
<td>1.11</td>
</tr>
<tr>
<td>P_{BS05} (MW)</td>
<td>952</td>
<td>↓819</td>
<td>↓788</td>
</tr>
<tr>
<td>Ψ_{SHINE} (VS)</td>
<td>250</td>
<td>↑284</td>
<td>↑322</td>
</tr>
<tr>
<td>n_{e,line}(10^{20}/m^2)</td>
<td>1.01</td>
<td>0.98</td>
<td>0.96</td>
</tr>
</tbody>
</table>

OUTCOME: Steady-state scenario

• Neutral beams and EC waves
 • Like hybrid scenario
• Local reversed shear controlled by ECCD
 • Enhanced confinement ITB*
• No-wall beta limit f_{BS} = 3.0

CONCLUSION

• Target plasma at flattop phase is modeled by 1.5-D simulations based on physics theories and efforts are made to optimize the performance of the scenarios.
• For Hybrid scenario
 • The q profile in the deep core region is flattened by the combination of NB&CD and ECCD.
 • Replacement of ECCD by ICCD or LHCD yields performance degradation.
• For Steady-state scenario
 • Local reversed shear is controlled by localized ECCD to have an ITB at mid-radius.
 • All the deconstructive low-n modes are stable in the optimized position of the local reversed shear.
• Sensitive studies with the calibrated 0-D study show that the extension of plasma bulk towards LFS does not yield better plasma performance. [see the manuscript]

ACKNOWLEDGEMENTS / REFERENCES

The efforts and contributions by the members in CFETR team and the international partners are greatly appreciated.

METHODS

Core-pedestal coupling workflow in OMFIT used to model target plasma

Steps for optimization

Step 1. Optimize density and Zeff at pedestal
Step 2. Tailor q profile for each scenario with the H&CD methods with the highest priority in engineering design

Step 1. Scan of density and Zeff at pedestal to get the highest fusion power [2]