First-principle-based integrated modelling of ^{ID: P2-23} multiple isotope pellet cycles at JET

M. Marin

J. Citrin, L. Garzotti, M. Valovic, C.Bourdelle, Y. Camenen, F. J. Casson, A. Ho, F. Koechl, M. Maslov and JET contributors^{*}

IMT/DIFFER

M.Marin@differ.nl

ABSTRACT

- •Measurements of the isotope ratio profile inferred a fast deuterium penetration time, comparable to the energy confinement time.
- •The pellet cycle of a mixed isotope tokamak plasma is successfully reproduced by integrated modelling.
- •The modelling recovered the fast deuterium penetration time scale.

OUTCOME

FAST MIXING

- The evolution of the neutron rate is in good agreement with the experimental data
- The fast timescale immediately after the first pellet is correctly captured

BACKGROUND

- $D_i \sim D_e$ and $V_i \sim V_e$ is often assumed in the modelling
- • $D_i \gg D_e$ and $V_i \gg V_e$ is suggested by previous experimental observation [1]
- •The theory predicts large ion transport coefficients for Ion Temperature Gradient (ITG) dominated plasma [2]
- •A large diffusion can be balanced by a large pinch. Ambipolarity is maintained, but fast mixing is possible $\frac{\partial n}{\partial t}$

•Interpretive modelling on experiment using pellets at JET suggested "large" ion particle transport coefficients, $D_D/\chi_{eff} \approx 0.4$ [3]

Electron profile relaxes while D and H mix at a faster timescale

INSTABILITIES ANALYSIS

- Outer positive *R/L_n* region TEM drive caused by large *R/L_n* results in strong outward particle flux, as in
 [6]
- Inner negative R/L_n region ITG drive caused by large concomitant R/L_{Ti} increase.

Temperature and density gradients before and after the first pellet

	Pre pellet			Post pellet		
Gradient	R/L_{T_i}	$R/L_{T_{e}}$	R/L_{n_e}	R/L_{T_i}	$R/L_{T_{e}}$	R/L_{n_e}
$\rho = 0.68$	7.4	7.7	2.8	14.4	18.1	-11.4
$\rho = 0.85$	11.1	12.2	5.6	9.5	8.8	14.4

Comparison between GENE and QuaLiKiz before and after the firs pellet

METHODS

INTEGRATED MODELLING

- Gaussian Process Regression (GPR) [4] was used to fit the profiles
- 8-channels first-principles modelling of pellet cycle performed for the first time
 QuaLiKiz for Turbulent transport
 ESCO
 PION
 HPI2

 $j, T_e, T_i, \Omega, n_e, n_H, n_D, n_{Be}$, Equilibrium, NBI, ICRH, Neutral source, Pellets NCLASS for Neoclassical SANCO PENCIL FRANTIC transport

FITTING THE PEDESTAL

- The pedestal was tuned to match experimental interferometer data on pedestal channel
- The transport predicted by QuaLiKiz automatically matched the remaining channels

GYROKINETIC ANALYSIS

Interferometer lines

 Linear and nonlinear GENE [5] simulations were performed to validate the QuaLiKiz predictions

Artificially added transport

Pre – pellet experiment VS model

Pedestal evolution matched

Comparison of experimental and modelled neutron rates

fluxes confirmed crucial ITG stabilization

[1] M. Maslov et al. 2018 *Nucl. Fusion* **58** 076022

[2] C. Bourdelle et al. 2018 *Nucl. Fusion* **58** 076028

[3] M. Valovic et al. 2019 *Nucl. Fusion* **59** *106047*

[6] C. Angioni et al 2017 Nucl. Fusion **57** 116053

[4] A.Ho et al. 2019 *Nucl. Fusion* **59** 056007

[5] F. Jenko et al. 2000 *Phys. Plasma* **7** 1904

Positive ramifications for ITER Helium ash removal

CONCLUSION

and burn control

REFERENCES

• Fast timescale for isotope mixing, validated by first principle modelling

The results are encouraging with regard to reactor fuelling capability

- Extensive sensitivity tests confirmed timescales robust against modelling assumptions
 - Successful comparison with GENE on linear spectra and nonlinear

* See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al. to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)