

TUNGSTEN TRANSPORT IN TOKAMAKS: TOWARDS REAL-TIME KINETIC-THEORY-BASED PLASMA PERFORMANCE OPTIMISATION

P. Manas ¹ , C. Angioni ² , J.F. Artaud ¹ , C. Bourdelle ¹ , J. K.L. van de Plassche ³ , X. Yang ⁵ , the AS ¹ CEA, IRFM, F-13108 Saint Paul-lez-Durance, France. ² Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany ³ DIFFER-Dutch Institute for Fundamental Energy Research, Eindhoven, th ^{**} see http://west.cea.fr/WESTteam	 Citrin³, E. Fable², F. Felici⁴, P. Maget¹, C.D. Stephens², SDEX Upgrade Team[*] and the WEST team^{**} ⁴ Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland. ⁵ Institute of Plasma Physics, Chinese Academy of Science, Hefei, 230031, China/P.R. China [*] H. Meyer et al, Nucl. Fusion 59 (2019) 112014
Summary	Fast transport models: towards real time control
Predict and analyse W transport with the same modelling tools in two tokamaks: AUG and WEST -> validation of reduced transport models	Integrated modelling framework: ASTRA -> 6000 P _{ECRH} =2 MW P _{ECRH} =1 MW
Integrated modelling of AUG:and WEST• NBI and RF heating• Dominant electron heating• Toroidal rotation• Large aspect ratio• ECRH heating as actuator• No injection of toroidal	 of QuaLiKiz [6] Transport equations solved for Te, Ti, ne and current diffusion Sources taken from ASTRA and fixed in time Impurity transport not implemented

torque

W accumulation in ASDEX Upgrade NBI heated plasma

ECRH scan in ASDEX Upgrade (H-mode)

- Set of H-mode discharges extensively studied in [1,2]
- Constant NBI power

Central increase of tungsten density in between sawtooth crashes (from grazing incidence UV spectroscopy)

Analysis of 2 phases with 2 MW and 0.2 MW of ECRH

- Characterisation of the impact of ECRH on tungsten accumulation
- Integrated modelling tool: ASTRA
- Turbulent transport: QuaLiKiz [3]
- Neoclassical transport: NEO [4]
- **Toroidal rotation included**

Integrated modelling: central particle source

Several particle sources used in ASTRA

Nominal deposition computed from the NBI

Can we reproduce the central particle accumulation with Te/Ti?

With increasing ECRH power, central density peaking decreases

0.5

0

0

Mid-radius density peaking increases, consistent with increased Te and reduced collisionality [7]

Central electron peaking driving the W accumulation qualitatively reproduced with fast transport models

WEST long pulse with dominant electron heating

WEST upper single null long pulse L-mode plasma [8]

- Dominant electron heating: 2.8 MW of LHCD and a phase with 0.65 MW of ICRH
- Phase with nitrogen seeding –> increased neutron flux
- **Tungsten** content monitored with SXR and UV spectroscopy (no accumulation) observed)

module in ASTRA

- **Central source removed**
- Half the nominal particle source

- **Central R/Ln decreased with reduced** source (and corresponding neoclassical inward convection of tungsten)
- Residual R/Ln from Ware Pinch
- Accumulation only obtained with sufficient central particle source

Dominant electron heating: trapped electron mode turbulence

Further investigation in gradient driven simulations

Central particle source vs turbulent diffusion: Te/Ti

Predictions of Te and Ti sensitive to electron heat transport from Electron Temperature **Gradient driven micro-instabilities**

- Quasilinear approximation (ad-hoc inclusion of these scales)
- When electron heat transport from ETG removed, higher Te/Ti obtained

Increased Te/Ti generates more turbulent

Qualikiz vs GKW: stabilisation of ∇Te TEM

Comparisons between GKW [9] and QuaLiKiz

r/a	R/L_{T_e}	T_e/T_i	R/L_n	R/L_{T_i}	Z_{eff}	$ u_*$	$Q_e({ m kW/m^2})$	$Q_i({ m kW/m^2})$
0.5	15	1.8	5.6	11.3	2.8	0.5	46	15

Quasilinear particle flux

transport:

- Increased turbulent particle diffusivity
- Electron density peaking decreases (density pump-out)

Important ingredients for tungsten accumulation modelling:

- **Central particle source**
- **Te/Ti (turbulent particle diffusion)**

- Steady state given by $\Gamma_e = 0$ (no particle source)
- Stable region found in QuaLiKiz but not in GKW (∇Te TEM always unstable)
- Strong dependence of $\Gamma_{\rm e} = 0$ condition with collisions
- **Overstabilisation of TEM found in QuaLiKiz from previous collision operator Testing of improved collision operator [10]** ongoing and encouraging

References

[1] Angioni et al *NF* **57** 056015 (2017) [2] Sertoli et al, *PoP* **24** 112503 (2017) [3] Bourdelle *PPCF*. **58** 014036 (2016) [4] Belli et al, *PPCF* **50** 095010 (2008) [5] Felici et al *NF* **51** 083052 (2011)

[6] van de Plassche *PoP* **27** 022310 (2020) [7] Angioni, *PRL* **90** 205003 (2003) [8] Yang *NF* **60** 086012 (2020) [9] Peeters *CPC* **180** 2650 (2009) [10] Stephens to be submitted

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

TH/ P2 – 28th IAEA Fusion Energy Conference, Nice, France

