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3. Second benchmark case — ohmic burn-through in JET-C
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1. Background
Motivation e

ITER first plasma is planned in 2025. Reliable modelling capability is needed to develop and optimize iod|
the plasma initiation scenario. Plasma burn-through modelling codes never been compared one |
another, although there have been comparison of modelling results against (limited) experimental data.

This motivated the code benchmark activity in ITPA-IOS group as a Joint Analysis #14 for 2018-2020.
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The summary of the code benchmark was published in Hyun-Tae Kim et al 2020 Nucl. g Bl o e o measured data.
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Further details can be found in Hyun-Tae Kim et al 2020 Nucl. Fusion 60 126049.
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