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Flight simulator Fenix @ IPP

Full discharge prediction for ASDEX Upgrade
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KEY POINTS:
 Discharge preparation and prediction useful to improve pulse reliability (crucial @ ITER)
 Use as input only Pulse Schedule (no pre-existent experimental data needed)
 Kinetic and magnetic control as in the real-life tokamak plasma.
 Reduced physics models from 0D to 1D kinetic and 2D equilibrium to perform fast simulations
 Use state-of-the art codes and control framework

➢ Here several full discharge runs are presented, detailing the various phases and peculiarities 
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Reduced physics models in ASTRA-SPIDER

DEMO studies

➢ First ever fully pulse-schedule based tokamak flight-simulator Fenix [1,2] built at IPP for ASDEX 
Upgrade
➢ Built incorporating a plasma model (ASTRA+SPIDER transport-equilibrium solvers [3,4]) into the 
PCSSP Simulink framework [5]
➢ PCSSP is the framework chosen for ITER to embed the control system and its modules 
 

➢ TimeSeriesGenerator converts a Pulse Schedule into waveforms for the various actuators and 
requests for fueling, heating, shaping, etc.
➢ Controllers, Actuators and sensors ↔  models for heating, fueling, coil system, and diagnostics
➢ Computational time for 1 AUG full discharge ~ 1-3 minutes depending on resolution and models 
employed
➢ Developed for both ASDEX Upgrade and for DEMO tokamaks
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➢ Electron density follows from quasi-neutrality. Solve for deuterium/tritium and impurity particle transport in the core:
diffusion scaled from heat conductivity, pinch follows simple theoretical arguments 

➢ Simple Kadomtsev-based sawtooth model
➢ Analytical neoclassical transport formulas
➢ L-H transition model based on P

sep,ions
 > P

LH,Martin
 / 2 (extrapolation to low density linear)

➢ Pedestal model based on “average-ELM” model, with pedestal top pressure clamped at a value given by a scaling (result 
of EPED calculations or empirical scaling)

➢ SOL/divertor model for particles: global balance divided into “zones”. Each zone connects via “diffusion-like” terms. Gas 
puff acts as a source, pump as a sink
➢ SOL/divertor model for energy: 0D scaling for plate temperature as a function of power entering the SOL at mid-plane 
and impurity content. Can lead to detachment when radiated power exceeds a certain threshold. Not yet tested!
➢  

- Heating models: 
* RABBIT [M. Weiland et al 2018 Nucl. Fusion 58 082032] for NBI
* TORBEAM [M. Reich et al., Fus. Eng. & Des., Vol 100, 2015, 73] for ECRF
* no reduced model for ICRF yet!

- Fueling models:
* Parametric regression obtained running HPI2 code [B. Pegourie, et al.

Nucl. Fusion, 47 (2007), p. 44] on a set of plasmas
* NEUT for incoming neutrals

- Negative triangularity discharge #36026
> Capture several phase transitions (from L-mode to dithering L-H transitions to H-mode) → interaction between shaping and 
edge power

- Globally:
* quasi-stationary MHD equilibrium 
model (Grad-Shafranov equation)

- Locally:
* Core transport model for Te, Ti, ne, nZ, j||

* Edge/pedestal models, L-I-H H-I-L transition models

* SOL transport model for exhaust (heat flux) and for 
particle balance (fueling)

* SOL/divertor model for exhaust and particle balance

* Plasma-divertor and plasma-wall interaction models

Predictability
~ 100%
~ 70%
~ 30%
~ 10%

> simple breakdown model used, need better one
> edge current prediction important to determine current when
strike point position control is employed

Kinetic control scheme

- How sensitive is sytem 
to noise & errors 
in sensors? Explore P

sep
 

quantity
- P

rad
 imposes strong

constraints on signal 
quality due to 
requirements to be 
above LH transition and 
below a certain value 
for divertor protection

- Oscillations of fusion power due to fueling (intermittent pellets)

- Separatrix power (bottom subplot) oscillates strongly due to noise on 
Prad → overcomes lower threshold set as 1.1 P

LH

- NBI (but could be ECH as well) power intervenes from control command 
to avoid plasma dropping into L-mode
However, this command is due to the spurious P

rad
 noise

- Avoidance of this: calibrate P
rad

 sensors to have tolerable noise and error

- Latencies and integration 
times not so much of a problem 
for the kinetic control modes 
presented here → system has 
much longer timescales

- Ramp-up / entry into burn phase also simulated - Sensitivity of burn phase performance on entry time → found first for 
ITER in [7]
- Later entry → lower core q profile → better confinement → higher fusion 
throughput

→ but also more consumed flux and different li
→ needs integrated modeling to find optimal trajectories

- Smooth entry into H-mode feasible by tuning density/power trajectories
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