A full discharge tokamak flight simulator

E. Fable, F. Janky, W. Treutterer, O. Kudlacek, R. Schramm, C. Angioni, M. Muraca, M. Siccinio1, H. Zohm, and the ASDEX Upgrade Team
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany

1 also at EUROFusion

KEY POINTS:
- Discharge preparation and prediction useful to improve pulse reliability (crucial @ ITER)
- Use as input only Pulse Schedule (no pre-existent experimental data needed)
- Kinetic and magnetic control as in the real-life tokamak plasma
- Reduced physics models from 0D to 2D equilibrium to perform fast simulations
- Use state-of-the-art codes and control framework

Flight simulator Fenix @ IPP

- First ever fully pulse-schedule based tokamak flight simulator Fenix [1,2] built at IPP for ASDEX Upgrade
- Built incorporating a plasma model (ASTRA-SPIDER transport-equilibrium solver [3,4,5]) into the PCSSP Simulink framework [5]
- PCSSP is the framework chosen for ITER to embed the control system and its modules

Reduced physics models in ASTRA-SPIDER

- Globally:
 * quasi-stationary MHD equilibrium model (Grad-Shafranov equation)

- Locally:
 * Core transport model for Te, Ti, ne, nZ
 * Edge/pedestal models, L-I-H-L-I transition models
 * SOL transport model for exhaust (heat flux) and for particle balance (fueling)
 * SOL/divertor model for exhaust and particle balance
 * Plasma-divertor and plasma-wall interaction models

- The core region, defined from magnetic axis to pedestal top radius, is determined by assigning diffusivities with some models
 * For T_e and T_i:
 - simple gyro-Bohm model scaled to give H = 0.4-0.5 in L-mode, R ~ 1-16 ms
 - T_e ~ 0.6, T_i ~ this is usually observed in standard
 - Ion source and can strongly influence

 partial pressure as a source, pump as a sink

- SOL/divertor model for power. 0D scaling for plate temperature as a function of power entering the SOL at mid-plane
 and impurity content. Can lead to detachment when radiated power exceeds a certain threshold. Not yet tested!

- Heating models:
 * HEARTH [M. Weiland et al 2010 Nucl. Fusion 50 063011] for NBI
 * NBI power model for ITER

- Fueling models:
 * Simple Kadomtsev-based sawtooth model
 * Electron density follows from quasi-neutrality. Solve for deuterium/tritium and impurity particle transport in the core
 - Negative triangularity discharge #36026
 - Ramp-up / entry into burn phase also simulated

References

Acknowledgments
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.