

Extrapolation to JET-DT plasmas using a combination of empirical scaling and the **ASCOT** neutral beam heating code

Paula Sirén^{a,b}, Henri Weisen^c, Joel Kilpeläinen^d, Jari Varje^d, Žiga Štancar^e and JET Contributors*

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

*See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al. to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

^aVTT Technical Research Centre of Finland, P.O Box 1000, 02044 VTT, Finland ^bDepartment of Physics, University of Helsinki, 00014 Helsinki, Finland ^cSwiss Plasma Center, Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland ^dAalto University, P.O. Box 11100, 00076 Aalto, Finland ^eJožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia

BACKGROUND

JET DTE2 in 2021: Goals (KPIs) Best performing plasmas

- target power of 40 MW of auxiliary heating
- thermal stored energies in the range 10-13 MJ
- DD neutron rate of 5×10^{16} n/s was an objective in the development of hybrid and baseline scenarios for DTE2

DT neutron rate goal

A DT neutron rate of 5.3×10¹⁸ n/s corresponds to a fusion power P_{DT}=15 MW. [1]

Need for flexible and quick tool for standard analysis and **DT scenario development**

TOOLS & COUPLING

JETPEAK [2]

• database currently includes some 15000 samples from stationary phases in all JET-ILW experiments and more than 1000 structured variables, from diagnostics and a variety of modelling codes

ASCOT [3,4]

· has been used at JET for analysis actively since late 1990's and during

DATA SETS for DT extrapolations

First set – until Feb 2020

Baseline ($q_{95}\approx3$, $I_p \leq 4$ MA), target auxiliary power $P_{tot} = 40$ MW, target $I_p = 4$ MA $(q_{95}\approx 4-4.5, I_p \leq 3.1 \text{ MA})$ target auxiliary power $P_{tot} = 40 \text{ MW}$, target I_p=2.5 MA

 $\dot{A}T$ (q₉₅≈4, $I_p \leq 3MA$) target auxiliary power P_{tot} = 30 MW, target I_p= 2.8 MA

Second set – updated with DTE2 references

Plasma current not changed

Third set – DTE2 references + highest neutron rate plasmas from latest campaigns

Plasma current not changed, NBI power in more realistic level

Empirical baseline regression (coloured symbols) and extrapolation (o,+) to DTE2 target parameters using a scaling with power in MW and a proxy for edge fuelling (Balmer- α emission). Top: for thermal stored energy. Bottom: for DD neutron rates.

- campaigns in 2016 (C36-37) it was extended with a complete fusion product module AFSI [5] and coupled with synthetic neutron diagnostics
- testing and validation against neutron production data was published in [2]
- Matlab interface for JETPEAK-ASCOT, in which ASCOT has been coupled to the JETPEAK database

Allows intershot analysis within ~10 minutes and DT extrapolation over larger datasets (~10² samples), presented in this paper, to be completed overnight.

PROFILE DEFINITION AND SCALING FOR EXTRAPOLATIONS

- Input data source: JETPEAK experimental data profiles for T_e, n_e
- As charge exchange data for most of the samples were unavailable, T_i profiles based on X-ray crystal spectrometry were used together with the observation that the fraction of thermal equipartition to the deposited ion power is close to constant throughout the radius
- T_i/T_e scaling: $T_{i.ext} = f_i T_{i0}$ and $T_{e0} = f_e T_{e0}$
- $f_e = a_w a_n^{-1} (T_{e0} + T_{i0}) / (T_{e0} + a_T T_{i0})$ and $f_i = a_T f_e$

	Thermal energy	Density	Temperature ratio
Baseline	$W_{th} \propto P^{0.86} n_e^{0.63} I_p^{-0.19}$	$< n_e > \propto I_p^{0.4} P_{tot}^{0.3}$	$T_i/T_e \propto (P_{tot}/)^{0.25} I_p^{-0.28}$
Hybrid	$W_{th} \propto P^{0.7} < n_e > 0.98 I_p^{0.0}$	$< n_e > \propto I_p^{0.4} P_{tot}^{0.3}$	$T_i/T_e \propto (P/)^{0.25} I_p^{-0.28}$
AT	$W_{th} \propto P^{0.7} < n_e > 1 I_p^{0.0}$	$< n_e > \propto I_p^{0.4}$	$T_i/T_e \propto (P/)^{0.5} I_p^{-0.25}$

CONCLUSIONS AND FUTURE WORK

Flexible and easy-to-use tool for JET DTE2 scenario development is

EXTRAPOLATED NEUTRON RATES

SET 1 (total DT neutron rates vs measured DD)

SET 2 (by components: total, Th, NBI-Th, NBI-NBI vs total measured DD)

demonstrated by performing large sets of empirically scaled DT extrapolations for best performing and DTE2 ref shots from baseline, hybrid and AT experiments

- All highest DD neutron rate pulses have not been included in the DTE2 ref list, so the extrapolations will be run for more extensive data sets.
- $P_{aux} = 40$ MW cannot be likely achieved, so the extrapolation routines can be updated with the most realistic assumption of P_{NBI}

References

[1] E. Joffrin et al., Nuclear Fusion 2019 https://doi.org/10.1088/1741-4326/ab2276 [2] P. Sirén et al. 2019 JINST 14 C11013

[3] J. A. Heikkinen et al. 2001 J. Comput. Phys. 173 527-48 [4] E. Hirvijoki et al. 2014 Comput. Phys. Commun. 185 1310-1321 [5] P. Sirén et al. 2018 Nucl. Fusion **58** 016023

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.