ID: 743 First-principle based multi-channel integrated modelling in support to the design of the Divertor Tokamak Test Facility

I.Casiraghi^{1,2}, P.Mantica², F.Koechl³, R.Ambrosino^{4,5,6}, B.Baiocchi², A.Castaldo⁵, J.Citrin⁷, M.Dicorato¹, L.Frassinetti⁸, A.Mariani¹, P.Vincenzi⁹, P.Agostinetti⁹, L.Balbinot^{9, 10}, S.Ceccuzzi^{6, 11}, L.Figini², G.Granucci², P.Innocente⁹, T.Johnson⁸, M.Valisa⁹

¹Dipartimento di Fisica "G. Occhialini", Università di Milano-Bicocca, Milano, Italy; ²Istituto per la Scienza e Tecnologia dei Plasmi, CNR, Milano, Italy; ³CCFE, Culham Science Centre, Abingdon, UK; ⁴Università degli Studi di Napoli Federico II, Napoli, Italy; ⁵Consorzio CREATE, Napoli, Italy; ⁶DTT S.C. a r.l., Frascati, Italy, ⁷FOM Institute DIFFER, Eindhoven, NL; ⁸Fusion Plasma Physics, ECSS, KTH Royal Institute of Technology, Stockholm, Sweden; ⁹Consorzio RFX, Padova, Italy; ¹⁰Università degli Studi di Padova, Padova, Italy; ¹¹ENEA C.R.Frascati, Frascati, Italy

paola.mantica@istp.cnr.it

ABSTRACT

First results of the integrated modelling of DTT scenarios (R=2.14 m / a=0.65 m) using first-principle quasi-linear transport models are presented, in support to the design of the device and to the definition of the DTT scientific workprogramme. In the full power scenario, central temperatures of ~20 keV for electrons and ~10 keV for ions with central densities ~2.5 1020 m-3 are predicted in fair agreement by the two models used. Gyrokinetic simulations have been used to validate the models in the DTT range of parameters. As a result of this work, the heating mix was defined, the size of device was increased to R=2.19 m/a=0.70 m, and reference profiles for diagnostic design, estimates of neutron yields and fast particle losses have become available.

INTRODUCTION

- •Studying the controlled power and particle exhaust from a fusion reactor is a main research topic in the European Fusion Roadmap [1].
- •Developing an alternative exhaust strategy, which is crucial to mitigate the risk, is the main task of the new D-shaped superconducting tokamak DTT (Divertor Tokamak Test facility)[2], with the first plasma planned for 2026.

AIM OF THE STUDY

Performing integrated modelling of the foreseen operational scenarios using first principle based transport models and state-of-art modules for heating, fuelling and magnetic equilibrium is of key importance for the optimisation of the various aspects of the DTT. It is required to:

- support the definition of the heating mix,
- support the design of the neutron shields,
- support the assessment of fast particle losses,
- support the design of diagnostic systems,
- •help the elaboration of a DTT scientific work-programme.

INTEGRATED MODELLING SET-UP

SCENARIOS

The integrated modelling of various DTT scenarios with Single Null (SN) configuration in H-mode has been performed. Particularly, the Full Power (FP) scenario steady-state predictions are crucial for the DTT design.

SIMULATIONS

The simulations predict steady-state radial profiles of electron and ion temperature, density, current density, rotation, power depositions, and impurity densities in the region ρ_{tor} < 0.94. The pedestal was calculated using the EPED1 model. Integrated runs have been primarily done using the JINTRAC[3] suite of codes and in some cases using the ASTRA[4] transport solver with a mixed ASTRA–JINTRAC approach.

TURBULENT TRANSPORT

Inside the top of the pedestal, the turbulent heat and particle transport is calculated by the Trapped-Gyro-Landau-Fluid (TGLF) [5] or QuaLiKiz (QLK)[6] quasi-linear transport models. The two most recent versions of TGLF have been used: TGLF SAT1-geo, released in November 2019, and TGLF SAT2, released in January 2021. In runs with QLK, two versions have also been employed: the new standard QLK release and an "ad hoc" QLK version, specifically developed for DTT to match gyrokinetic predictions in TEM dominant conditions.

HEATING SYSTEMS

Following simulations of several alternatives (some listed in Table 2), the OPTION D has been chosen as reference heating mix for full power scenarios.

- •The choice of higher NNBI energy (together with maximum allowed injection angle) was driven by the need of minimizing fast particle losses and allowing resonant excitation of Alfvenic waves.
- •The choice of higher ICRH power was driven by the need of central ion heating and fast ions, to alleviate the $T_e > T_i$ tendency due to high ECH power.

Heating option	NBI energy/	ECH Power	ICH Power	τ_E (SAT1-	H98Y	eta_{pol} therm/tot	Wfast Wth	$\frac{Te0}{Ti0}$	DD neutrons
А	power 400 keV 15 MW	(MW) 32	(MW) 4	geo) 0.26 s	0.89	0.57 / 0.61	6.7%	1.92	1.28e17 s ⁻¹
В	400 keV	40	4	0.26 s	0.91	0.59 / 0.61	3.7%	2.04	0.83e17 s ⁻¹
D	500 keV 10 MW	33.6	8	0.27 s	0.95	0.54 / 0.57	6.0%	1.91	1.31e17 s ⁻¹

Table 2: simulated plasma performance for different options of heating mix

0.4 0.6 normalised o

PLASMA PROFILES FOR FULL POWER SCENARIO

Radial profiles predicted for the reference full power scenario option D are shown in Figure 3. The 4 models agree reasonably outside ρ_{tor} =0.4, whilst QLK features much flatter density inside ρ_{tor} =0.4, which is the region of very high ECH power density. According to gyrokinetic simulations, TGLF is more reliable in this TEM dominated region.

T_a significantly larger

- than T_i. n_e profiles rather peaked
- •NBI: 60% P 40% P
- •ICH: 20% Pe 80% Pi Large collisional

exchange

 To have a reference q₉₅ value >3, the DTT size has been increased to R=2.19m and a=0.70m.

 Neutron rate is compatible with present design of neutron shields.

Figure 3: Radial profiles of the Figure 5: Radial profiles of reference Full Power SN scenario. electron and ion power

GYROKINETIC SIMULATIONS

- To identify the most reliable prediction inside $\rho_{\rm tor}$ =0.4, linear and nonlinear gyrokinetic simulations have been performed at ρ_{tor} =0.32, using the local flux tube version of the GENE code [7] and the parameters of the SAT1geo simulation.
- Linear analysis shows that at this radius the dominant mode is the Trapped Electron Mode (TEM).
- At zero particle flux GENE predicts a sizeable density peaking R/L_n~1.8, closer to TGLF. The very flat QLK n_e profile is not validated.

Figure 6: Particle to heat flux ratio

vs R/L_n from GENE, TGLF, QLK.

CONCLUSIONS

· Integrated steady-state simulations of DTT scenarios are now available to support DTT design and the development of a scientific work-programme..

- TGLF and QLK give similar predictions in the region ρ_{tor} >0.4, whilst in the inner TEM dominated region TGLF has to be retained as more reliable, according to gyro-kinetic simulations.
- The machine size has been increased and the heating mix has been defined.

REFERENCES

 A.J.Donné, Phil.Trans.R.Soc. A377 20170432 (2018).
 R.Martone, R.Albanese, F.Crisanti, P.Martin, and A.Pizzuto (ed.), "Divertor Tokamak Test Facility: Interim Design Report" (SN-978-8236-374-4 (2010) and A.Pizzuto ISBN:978-88-8286-378-4 (2019) [3] M.Romanelli et al., Plasma and Fusion Research, 9 3403023

(2014).
(2014).
(2) G.V. Pereverzev, P.N. Yushmanov, "ASTRA automated system for transport analysis in a tokamak", IPP Report 5/98 (2002)
[5] G.M.Staebler et al., Plasma Physics and Controlled Fusion, 63 015013 (2020).
[6] J. Citrin, C. Bourdelle, and F. J. Casson et al., Plasma Phys. and Contr. Fusion, 59 124005 (2017).
[7] F.Jenko et al, Phys. Plasmas 7 1904 (2000)

