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First	results	of	the	integrated	modelling	of	DTT	scenarios	(R=2.14	m	/	a=0.65	m)	
using	first-principle	quasi-linear	transport	models	are	presented,	 in	support	to	
the	 design	 of	 the	 device	 and	 to	 the	 definiFon	 of	 the	 DTT	 scienFfic	 work-
programme.	 In	 the	 full	 power	 scenario,	 central	 temperatures	 of	 ~20	 keV	 for	
electrons	 and	 ~10	 keV	 for	 ions	 with	 central	 densiFes	 ~2.5	 1020	 m-3	 are	
predicted	 in	 fair	 agreement	 by	 the	 two	models	 used.	GyrokineFc	 simulaFons	
have	been	used	 to	 validate	 the	models	 in	 the	DTT	 range	of	parameters.	As	 a	
result	 of	 this	 work,	 the	 heaFng	 mix	 was	 defined,	 the	 size	 of	 device	 was	
increased	to	R=2.19	m/a=0.70	m,	and	reference	profiles	for	diagnosFc	design,	
esFmates	of	neutron	yields	and	fast	parFcle	losses	have	become	available.	

Radial	profiles	predicted	for	the	reference	full	power	scenario	opFon	D	are	
shown	in	Figure	3.	The	4	models	agree	reasonably	outside		ρtor	=0.4,	whilst	QLK	
features	much	flater	density	inside		ρtor	=0.4,	which	is	the	region	of	very	high	
ECH	power	density.	According	to	gyrokineFc	simulaFons,	TGLF	is	more	reliable	
in	this	TEM	dominated	region.	

ABSTRACT	

PLASMA	PROFILES	FOR	FULL	POWER	SCENARIO	

• Studying	the	controlled	power	and	par2cle	exhaust	from	a	fusion	reactor	is	a	
main	research	topic	in	the	European	Fusion	Roadmap	[1].		
• Developing	 an	 alternaFve	 exhaust	 strategy,	 which	 is	 crucial	 to	 miFgate	 the	
risk,	 is	 the	 main	 task	 of	 the	 new	 D-shaped	 superconducFng	 tokamak	 DTT	
(Divertor	Tokamak	Test	facility)[2],	with	the	first	plasma	planned	for	2026.	

INTRODUCTION	

SCENARIOS	
The	 integrated	 modelling	 of	 various	 DTT	 scenarios	 with	 Single	 Null	 (SN)	
configuraFon	in	H-mode	has	been	performed.	ParFcularly,	the	Full	Power	(FP)	
scenario	steady-state	predicFons	are	crucial	for	the	DTT	design.	
SIMULATIONS	
The	 simulaFons	 predict	 steady-state	 radial	 profiles	 of	 electron	 and	 ion	
temperature,	 density,	 current	 density,	 rotaFon,	 power	 deposiFons,	 and	
impurity	densiFes	 in	 the	 region	ρtor	<	0.94.	The	pedestal	was	calculated	using	
the	 EPED1	 model.	 Integrated	 runs	 have	 been	 primarily	 done	 using	 the	
JINTRAC[3]	 suite	 of	 codes	 and	 in	 some	 cases	 using	 the	 ASTRA[4]	 transport	
solver	with	a	mixed	ASTRA–JINTRAC	approach.	
TURBULENT	TRANSPORT	
Inside	 the	 top	 of	 the	 pedestal,	 the	 turbulent	 heat	 and	 parFcle	 transport	 is	
calculated	 by	 the	 Trapped-Gyro-Landau-Fluid	 (TGLF)	 [5]	 or	QuaLiKiz	 (QLK)[6]	
quasi-linear	transport	models.	The	two	most	recent	versions	of	TGLF	have	been	
used:	TGLF	SAT1-geo,	released	in	November	2019,	and	TGLF	SAT2,	released	in	
January	 2021.	 In	 runs	 with	 QLK,	 two	 versions	 have	 also	 been	 employed:	 the	
new	standard	QLK	release	and	an	“ad	hoc”	QLK	version,	specifically	developed	
for	DTT	to	match	gyrokineFc	predicFons	in	TEM	dominant	condiFons.	

INTEGRATED	MODELLING	SET-UP	

•  Integrated	steady-state	simulaFons	of	DTT	scenarios	are	now	available	to	
support	DTT	design	and	the	development	of	a	scienFfic	work-programme.. 

•  TGLF	and	QLK	give	similar	predicFons	in	the	region	ρtor		>0.4,	whilst	in	the	
inner	TEM	dominated	region	TGLF	has	to	be	retained	as	more	reliable,	
according	to	gyro-kineFc	simulaFons.	

•  The		machine	size	has	been	increased	and	the	heaFng	mix	has	been	defined. 

CONCLUSIONS	Table	1:	DTT	Parameters
Btor	≤	6	T

Ipl	≤	5.5	MA
tpulse	≤	100	s	
R	=	2.14	m
a	=	0.65	m

Psep/R	≈	15	MW/m

ID:	743		
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AIM	OF	THE	STUDY	
Performing	 integrated	modelling	 of	 the	 foreseen	 operaFonal	 scenarios	 using	
first	 principle	 based	 transport	 models	 and	 state-of-art	 modules	 for	 heaFng,	
fuelling	and	magneFc	equilibrium	is	of	key	 importance	for	the	opFmisaFon	of	
the	various	aspects	of	the	DTT.		It	is	required	to:	
• support	the	definiFon	of	the	heaFng	mix,	
• support	the	design	of	the	neutron	shields,	
• support	the	assessment	of	fast	parFcle	losses,	
• support	the	design	of	diagnosFc	systems,		
• help	the	elaboraFon	of	a	DTT	scienFfic	work-programme.	

Figure	1:	DTT	device.	
Drawing	reproduced	from	[2].	

Figure	2:		Plasma	shape	
of	the	SN	DTT	scenario.	

Figure	3:		Radial	profiles	of	the	
reference	Full	Power	SN	scenario.	

• To	 idenFfy	the	most	reliable	predicFon	
inside	 ρtor	 =0.4,	 linear	 and	 nonlinear	
gyrokineFc	 simulaFons	 have	 been	
performed	at	ρtor	=0.32,	using	the	 local	
flux	 tube	version	of	 the	GENE	 code	 [7]	
and	 the	 parameters	 of	 the	 SAT1geo	
simulaFon.	

• Linear	analysis	shows	that	at	this	radius	
the	 dominant	 mode	 is	 the	 Trapped	
Electron	Mode	(TEM).	

• At	 zero	 parFcle	 flux	 GENE	 predicts	 a	
sizeable	 density	 peaking	 R/Ln~1.8,	
closer	 to	 TGLF.	 The	 very	 flat	 QLK	 ne	
profile	is	not	validated.	

HEATING	SYSTEMS	
Following	simulaFons	of	several	alternaFves	(some	listed	in	Table	2)	,	the	
OPTION	D	has	been	chosen	as	reference	hea2ng	mix	for	full	power	scenarios.	
• The	choice	of	higher	NNBI	energy	(together	with	maximum	allowed	injecFon	
angle)	was	driven	by	the	need	of	minimizing	fast	parFcle	losses	and	allowing	
resonant	excitaFon	of	Alfvenic	waves.		

• The	choice	of	higher	ICRH	power	was	driven	by	the	need	of		central	ion	heaFng	
and	fast	ions,	to	alleviate	the	Te>Ti	tendency	due	to	high	ECH	power.	

Heating  
option 

NBI  
energy/ 
power 

ECH  
Power 
(MW) 

ICH  
Power 
(MW) 

!! 
(SAT1-

geo) 
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!ℎ!"#/!"! 

!"#$%
!"#   !!0

!"0  DD 
neutrons 

A 400 keV 
15 MW 

32  4  0.26 s 0.89 0.57 / 0.61 6.7% 1.92 1.28e17 s-1 

     B 400 keV 
7.5 MW 

40  4  0.26 s 0.91 0.59 / 0.61  3.7% 2.04  0.83e17 s-1 

     D 500 keV 
10 MW 

33.6 8  0.27 s 0.95 0.54 / 0.57  6.0% 1.91 1.31e17 s-1 

 
Table	2:	simulated	plasma	performance	for	different	opFons	of	heaFng	mix	

GYROKINETIC	SIMULATIONS	

• Te	significantly	larger	
than	Ti.	
• ne	 profiles	 rather	
peaked	
• NBI:	60%	Pe	40%	Pi	
• ICH:	20%	Pe	80%	Pi	
• Large	 co l l i s ional	
exchange	
• To	 have	 a	 reference	
q95	value	>3,	the	DTT	
size	 has	 been	 in-
creased	 to	 R=2.19m	
and	a=0.70m.	
• Neutron	 ra te	 i s	
compaFb l e	 w i th	
present	 design	 of	
neutron	shields.	

 

Figure	4:		Radial	profiles	
of	power	densiEes.	
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Figure	6:		ParEcle	to	heat	flux	raEo	
vs	R/Ln	from	GENE,	TGLF,	QLK.	

Figure	5:		Radial	profiles	of	
electron	and	ion	power.	
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