ITG-TEM Turbulence Transition Causing Edge Temperature Ring Oscillation for Sustaining Stationary I-Mode Plasmas

X. L. Zou¹, A. D. Liu², M. K. Han^{3, 4}, T. B. Wang^{4, 5}, C. Zhou², M. Y. Wang⁶, Y. M. Duan⁷, X. Feng², G. H. Hu⁷, Y. Y. Li,⁷ H. Q. Liu⁷, Y. Liu⁷,

Z. X. Liu², B. Lv⁷, L. Wang,⁷ S. X. Wang⁷, Y. M. Wang⁷, J. L. Xie², H. L. Zhao⁷, Q. Zhang⁷, X.M. Zhong², G. Verdoolaege⁵, J. Q. Dong⁴,

Z. X. Wang³, W. X. Ding², G. Zhuang², EAST Team⁷

xiao-lan.zou@cea.fr

¹CEA, IRFM, F-13108 St Paul Les Durance, France

²University of Science and Technology of China, Hefei, Anhui 230026, China ³Key Laboratory of Materials Modification by Beams, School of Physics, Dalian University ⁶Hebei Key Laboratory of Compact Fusion, Langfang 065001, China of Technology, Dalian 116024, China

ABSTRACT

- Stationary I-mode plasmas (4.4 s) achieved in the EAST Tokamak.
- · Low frequency oscillation of the turbulence velocity observed during stationary I-mode plasmas, and it is not GAM.
- Radially localized edge temperature ring oscillation (ETRO) with azimuthally symmetric structure identified.
- Periodic ITG-TEM transition and transport modulation generated by ETRO.
- Turbulence transition controlled by electron temperature gradient.
- Experimental results consistent with the gyrokinetic simulation.

BACKGROUND

I-mode: Improved energy confinement mode (*≠*I-phase)

- ASDEX (Ryter PPCF1998) C-MOD (Mc Dermott PoP2009, Whyte NF2010) Stationary I-mode represents a potential and credible solution
- alternative to H-mode for standard operation scenario in the future fusion reactor (ITER, DEMO)

Characteristics of I-mode in comparison with H-mode

- High energy confinement similar to H-mode
- Transport barrier in T_e, but not in n_e
- ELM-free
- Prevent the core accumulation of W impurity
- Removal of fusion ash
- → Benefits for steady state operation in fusion reactor

1) WCM (weakly coherent mode): signature of I-mode (Whyte NF2010)

2) GAM concomitant to I-mode on C-MOD and ASDEX-U (Cziegler PoP2013, Manz NF2015), but not essential for EAST I-mode.

STATIONARY I-MODE ON EAST

⁴Southwestern Institute of Physics, Chengdu 610041, China ⁵Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium

⁷Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China

TURBULENCE ANALYSIS

Turbulence Spectra

Periodic ITG-TEM Transition

- One peak in L-mode turbulence spectrum
- Two peaks in I-mode turbulence spectrum
- One in electron diamagnetic drift direction (TEM)
- Another one in the ion diamagnetic drift direction (ITG) Alternating ITG-TEM transition controlled by
- electron temperature gradient
- Divertor particle flux modulated by TEM Good agreement between experiment/theory
 - Experiments

Gyrokinetic Simulation

Self-Regulation Mechanism for Stationary I-Mode

CONCLUSIONS

- Alternating ITG-TEM transition controlled by ETRO.
- Self-organizing system including ETRO, periodic ITG-TEM transition and transport modulation plays the key role in stationary I-mode plasmas.
- Possible same origin for WCM and TEM.
- Presence of TEM explaining the absence of the edge particle transport barrier in I-mode plasmas.
- EAST results provide a novel physics basis for accessing, maintaining and controlling stationary I-mode in the future.

REFERENCES

- 1. X. Feng, A.D. Liu, C. Zhou et al., Nucl. Fusion, 59 096025 (2019)
- 2. Y.J. Liu, Z.X. Liu, A.D. Liu et al., Nucl. Fusion, 60 082003 (2020)
- 3. A.D. Liu, X.L. Zou, M.K. Han et al. N,ucl. Fusion, 60 126016 (2020)