Stability of Neoclassical Tearing Modes and Their Active Stabilization in KSTAR

Y.S. Park, S.A. Sabbagh, Y. Jiang, J.W. Berkery (Columbia University, USA), B.H. Park, M.H. Woo, M.J. Choi, H.S. Kim, W.H. Ko, J.G. Bak, M. Joung, S.W. Yoon (KFE, Korea), H.K. Park (UNIST, Korea) ypark@pppl.gov

The off-axis ECCD reduced the amplitude of triggerless 2/1 mode

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

INTRODUCTION

In the recent KSTAR operation, experiments for NTM stability alteration and active mode control have been conducted

Motivation

- \Box Largely grown m/n = 2/1 NTM is limiting the sustained high performance plasma operation in KSTAR
- Avoidance and active control of NTMs using the present KSTAR actuators (ECCD/ECH) need to be investigated
- This study will contribute to construction of the NTM stability physics model and the NTM feedback control system for KSTAR

Outline

Triggerless and triggered 2/1 NTMs destabilized in different H-mode

Plasma profiles altered by fishbone unstable to 2/1 NTM

KOREA INSTITUE

OF FUSION ENERGY

 \Box In the period having fishbone, T_i, T_e and V_t gradually increase while \bar{n}_{e} decreases

- operational regimes
- Stability alteration and active stabilization of triggerless 2/1 NTMs
- □ Active stabilization of triggered 2/1 NTMs and effect of the fishbone instability on NTM destabilization

- Triggerless 2/1 mode destabilizes at intermediate $\beta_N \sim 1.5$ with no obvious mode triggering activity (could be driven by unstable current profile having $\Delta' > 0$)
- Triggered 2/1 mode destabilizes at higher $\beta_N \ge 2.5$ with observed mode triggering by sawteeth or ELMs consequently leading to a significant β_N and W_{mhd} reduction

Destabilizing perturbed bootstrap current effect in NTM stability is computed by using TRANSP

The amplitude of the triggerless 2/1 mode is reduced by up to TORAY-computed EC ray trajectories launched to Z = +20, +26, +28, +30 cm ~80% with the observed ELM quiescent phase when the ECCD is along the resonance layer localized at Z = $+26 \sim +28$ cm region along the resonance layer

The ECCD which stabilized the triggerless 2/1 mode is estimated to be deposited near the mode rational surface inferred from ECEI

TORAY analysis indicates that the ECCD launched to the Z = +26 ~ +30 cm region that partially stabilized the 2/1 mode drives current on R = 2.03 ~ 2.06 m along the outboard midplane which is consistent with the mode rational surface location inferred from ECEI

ACTIVE STABILIZATION OF TRIGGERED 2/1 NTMs

Z (m)

The triggered 2/1 mode amplitude is partially stabilized by ECCD

The plasma profiles redistributed by fishbone is thought to be less stable to NTM consequently leading a more frequent 2/1 NTM onset observed in the experiment

The off-axis ECCD destabilized fishbone and improved the plasma confinement

- By the off-axis ECCD applied to the discharges having no tearing mode, the fishbone with the co-existing n = 2 mode is commonly triggered shortly (~0.5 s) after the ECCD
- **D** Both β_N and stored energy are increased by ~10% by comparing the values before and after the ECCD

High $\beta_N \ge 3$ is sustained for a long period with the similar fishbone instabilities existing in high β_N phase

2/1 tearing modes destabilized in different H-mode operational regimes

 \Box Destabilizing effect of J_{BS} is computed to be finite in both tearing mode cases

STABILITY ALTERATION AND ACTIVE STABILIZATION OF TRIGGERLESS 2/1 NTMs

Duration of early ECH injection is critical for triggerless 2/1 mode destabilization

10

12

14

 $B_{T} = 1.9 T$

 $I_{P} = 520 \, kA$

P_{NBI} = 2.8 MW

□ With the existing fishbone, the 2/1 NTM onset is avoided in the discharge which resulted in high β_N values greater than 3 sustained for a long time period (~5 s) with a nominal B_T of 1.7 T

CONCLUSIONS

NTM stability and active control analysis in KSTAR

NTM stability and active control analysis in different operational regimes

- Triggerless 2/1 NTM stability has been altered by varied plasma density
- The mode localized ECCD significantly reduced the triggerless NTM amplitude
- Triggered 2/1 NTM onset now becomes a big hurdle for achieving high β_N in KSTAR, and the observed partial stabilization of the mode will be analyzed to identify the source of the stabilization effect
- Effect of fishbone on the plasma internal profiles and the 2/1 NTM destabilization has been confirmed

Next Steps

- □ In future NTM experiment, active NTM stabilization using feedback-actuated ECCD will be attempted
- □ A higher ECCD figure-of-merit for NTM stabilization is planned to be realized by optimizing the EC launch conditions for equilibria at a lowered $B_T \sim 1.6 T$
- NTM stability physics model will be constructed by fitting the equation to the data from the recent experiments

Triggerless 2/1 amplitude is more significant with reduced density

EFFECT OF FISHBONES ON NTM DESTABILIZATION

2.2

1.8

1.9

2.0

R (m)

2.1

Obvious core instabilities observed in the improved confinement phase lead to triggered 2/1 NTM

- The MHD activities in the neighboring discharges produced by using almost identical discharge setup were quite different which resulted in different NTM stability
- □ The low frequency fishbone instability which accompanies a weak n = 2 (presumably 2/2 kink) mode is observed in several discharges to improve β_N and stored energy

ACKNOWLEDGEMENTS

This research was supported by the U.S. Department of Energy under Contract No. DE-SC0016614.

The ELM stability is observed to vary when the measured mode amplitude is high

K\$TAR 28th IAEA Fusion Energy Conf. ID:1014: Stability of neoclassical tearing modes and their active stabilization in KSTAR (Y.S. Park, et al. 5/11/2021)