

Supported by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Stability of Neoclassical Tearing Modes and Their Active Stabilization in KSTAR*

Y.S. Park¹, S.A. Sabbagh¹, B.H. Park², M.H. Woo², M.J. Choi², H.S. Kim², W.H. Ko², J.G. Bak², M. Joung², Y. Jiang¹, J.W. Berkery¹, H.K. Park³, S.W. Yoon²

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Korea Institute of Fusion Energy, Daejeon, Korea ³UNIST, Ulsan, Korea

> presented at the 28th IAEA Fusion Energy Conference

May 10 – 15, 2021 Virtual Meeting

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

In the recent KSTAR operation, experiments for NTM stability alteration and active mode control have been conducted

Motivation

- Largely grown m/n = 2/1 NTM is limiting the sustained high performance plasma operation in KSTAR
- Avoidance and active control of NTMs using the present KSTAR actuators (ECCD/ECH) need to be investigated
- This study will contribute to construction of the NTM stability physics model and the NTM feedback control system for KSTAR

Outline

- Triggerless and triggered 2/1 NTMs destabilized in different H-mode operational regimes
- Stability alteration and active stabilization of triggerless 2/1 NTMs
- Active stabilization of triggered 2/1 NTMs and effect of the fishbone instability on NTM destabilization

2/1 tearing modes destabilized in different H-mode operational regimes

- □ Triggerless 2/1 mode destabilizes at intermediate $\beta_N \sim 1.5$ with no obvious mode triggering activity (could be driven by unstable current profile having $\Delta' > 0$)
- □ Triggered 2/1 mode destabilizes at higher $\beta_N \ge 2.5$ with observed mode triggering by sawteeth or ELMs consequently leading to a significant β_N and W_{mhd} reduction

Destabilizing perturbed bootstrap current effect in NTM stability is computed by using TRANSP

Destabilizing effect of J_{BS} is computed to be finite in both tearing mode cases

KSTAR

Duration of early ECH injection is critical for triggerless 2/1 mode destabilization

3

2/1 tearing mode

8

Compared to 21448 (LEFT),

Annon monor was a proper and the second and the sec

8

Time (s)

10

2/1 mode reduces rotation by ~50%, stored energy

and beta by ~20%

6

Time (s)

6

10

2

12

3

 $B_{T} = 1.9 T$

 $I_{P} = 520 \text{ kA}$

 $P_{NBI} = 2.8 \text{ MW}$

12

14

14

Triggerless 2/1 amplitude is more significant with reduced density

Triggerless 2/1 saturated amplitude increases when the plasma density is decreased by reduced gas puff

□ The ELM stability is observed to vary when the measured mode amplitude is high

KSTAR

Stability of NTMs and their active stabilization in KSTAR - Y.S. Park, et al. (IAEA-FEC 2020)

The off-axis ECCD reduced the amplitude of triggerless 2/1 mode

<u>TORAY-computed EC ray trajectories</u> \square <u>launched to Z = +20, +26, +28, +30 cm</u> <u>along the resonance layer</u> The amplitude of the triggerless 2/1 mode is reduced by up to ~80% with the observed ELM quiescent phase when the ECCD is localized at $Z = +26 \sim +28$ cm region along the resonance layer

KSTAR

The ECCD which stabilized the triggerless 2/1 mode is estimated to be deposited near the mode rational surface inferred from ECEI

TORAY analysis indicates that the ECCD launched to the $Z = +26 \sim +30$ cm region that partially stabilized the 2/1 mode drives current on R = $2.03 \sim 2.06$ m along the outboard midplane which is consistent with the mode rational surface location inferred from ECEI

KSTAR

ITe (dashed)

R

X-point Profile

R

Te (dashed)

The triggered 2/1 mode amplitude is partially stabilized by ECCD

<u>EC ray trajectory when target-Z = -20 cm</u> along the EC resonance layer

The ECCD applied from t = 7 s in the shot reduced the measured mode amplitude by ~30%. The applied ECCD is approximately aligned with the 2/1 mode (not an ideal alignment condition)

Plasma internal profiles varied by applied ECCD can affect the NTM stability

KSTAR 25668 ECE, CES

- The varied electron, ion, and plasma rotation profiles due to the applied off-axis ECCD may alter the tearing stability
- To clearly identify the stabilization effect from the perturbed bootstrap current compensation, the NTM stability analysis for the observed 2/1 modes is underway

Obvious core instabilities observed in the improved confinement phase lead to triggered 2/1 NTM

- The MHD activities in the neighboring discharges produced by using almost identical discharge setup were quite different which resulted in different NTM stability
- The low frequency fishbone instability which accompanies a weak n = 2 (presumably 2/2 kink) mode is observed in several discharges to improve β_N and stored energy

Plasma profiles altered by fishbone unstable to 2/1 NTM

□ In the period having fishbone, T_i , T_e and V_t gradually increase while \bar{n}_e decreases

The plasma profiles redistributed by fishbone are thought to be less stable to NTM consequently leading to a more frequent 2/1 NTM onset observed in the experiment

- By the off-axis ECCD applied to the discharges having no tearing mode, the fishbone with the co-existing n = 2 mode is commonly triggered shortly (~0.5 s) after the ECCD
- □ Both β_N and stored energy are increased by ~10% by comparing the values before and after the ECCD

High $\beta_N \ge 3$ is sustained for a long period with the similar fishbone instabilities existing in high β_N phase

With the existing fishbone, the 2/1 NTM onset is avoided in the discharge which resulted in high β_N values greater than 3 sustained for a long time period (~5 s) with a nominal B_T of 1.7 T

NTM stability and active control analysis in KSTAR

□ NTM stability and active control analysis in different operational regimes

- Triggerless 2/1 NTM stability has been altered by varied plasma density
- □ The mode localized ECCD significantly reduced the triggerless NTM amplitude
- Triggered 2/1 NTM onset now becomes a big hurdle for achieving high β_N in KSTAR, and the observed partial stabilization of the mode will be analyzed to identify the source of the stabilization effect
- Effect of fishbone on the plasma internal profiles and the 2/1 NTM destabilization has been confirmed

Next Steps

- In future NTM experiment, active NTM stabilization using feedback-actuated ECCD will be attempted
- □ A higher ECCD figure-of-merit for NTM stabilization is planned to be realized by optimizing the EC launch conditions for equilibria at a lowered $B_T \sim 1.6 \text{ T}$
- NTM stability physics model will be constructed by fitting the equation to the data from the recent experiments