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In the recent KSTAR operation, experiments for NTM stability
alteration and active mode control have been conducted

a Motivation

Largely grown m/n = 2/1 NTM is limiting the sustained high performance
plasma operation in KSTAR

Avoidance and active control of NTMs using the present KSTAR actuators
(ECCD/ECH) need to be investigated

This study will contribute to construction of the NTM stability physics model
and the NTM feedback control system for KSTAR

a Outline

Triggerless and triggered 2/1 NTMs destabilized in different H-mode
operational regimes

Stability alteration and active stabilization of triggerless 2/1 NTMs

Active stabilization of triggered 2/1 NTMs and effect of the fishbone instability
on NTM destabilization
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2/1 tearing modes destabilized in different H-mode operational regimes
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O Triggerless 2/1 mode destabilizes at intermediate 3, ~ 1.5 with no obvious mode
triggering activity (could be driven by unstable current profile having A’ > 0)

O Triggered 2/1 mode destabilizes at higher B 2 2.5 with observed mode triggering
by sawteeth or ELMs consequently leading to a significant g, and W4 reduction
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Destabilizing perturbed bootstrap current effect in NTM stability is
computed by using TRANSP

Modified Rutherford equation (MRE) describing NTM stability: E'g itéfeeg;:gi’ss:y;hséaspr?aismzagg 5223)12)
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O Destabilizing effect of Jg5 is computed to be finite in both tearing mode cases
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Duration of early ECH injection is critical for triggerless 2/1 mode
destabilization

Shot21448,n= 1 2 3 4

150 T T T T 1
' | Mode frequenc
125} red Y .
g 10l-|  2/1 mode is mostly stable with ]
> ECH during 0.05s-0.5s
g 75 _ ]
% _ _
| f - ]
25| s o 1
0- [ P | ] . ] ) 1
2 4 6 8 10 12
Time (s)

ECH duration

1 2 3 4

Shot 21448, n=
. —

60 T T T T T T T T
I . B:=19T 1
5ol | Mode amplitude In = 520 KA
- Png = 2.8 MW
o 40 .
m L
°
2 30F .
o |
g 20} -
101 .
oLl o e e ]
2 4 6 8 10 12
Time (s)

Shot 21510, n= 1 2 3 4
150 — T T T T T T T 1
- ECH
125} .
N 100'_ 2/1 mode is unstable with )
e:.; - Extended ECH during 0.05s-3.0s
e 75t 7 .
o | ]
g 50 2/1 tearing mode _
w | : 4 )
25 F SR Ry e e e
0- | | | | ! I |

Time (s)

ECH duration

60 y T I T ' T 1
i B,=1.9T |
50+ lp = 520 kA
: Pyg = 2.8 MW 1
@ 40 1
g Compared to 21448 (LEFT),
2301 2/1 mode reduces rotation
g 20k by ~50%, stored energy
i and beta by ~20%
10 1
0 - vt I [T BSSRN RS

Shot 21510, n= 1 2 3 4

6 8 10 12 14
Time (s)

KSTAR

Stability of NTMs and their active stabilization in KSTAR - Y.S. Park, et al. (IAEA-FEC 2020)



Triggerless 2/1 amplitude is more significant with reduced density
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0 Triggerless 2/1 saturated amplitude increases when the plasma density is decreased
by reduced gas puff

0 The ELM stability is observed to vary when the measured mode amplitude is high
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The off-axis ECCD reduced the amplitude of triggerless 2/1 mode
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The amplitude of the triggerless 2/1 mode is reduced by up to
~80% with the observed ELM quiescent phase when the ECCD is
localized at Z = +26 ~ +28 cm region along the resonance layer
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KSTAR

Stability of NTMs and their active stabilization in KSTAR - Y.S. Park, et al. (IAEA-FEC 2020)



The ECCD which stabilized the triggerless 2/1 mode is estimated to be
deposited near the mode rational surface inferred from ECEI
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Structure of ESTﬂig caused by rotating 2/1 tearing mode

O TORAY analysis indicates that the ECCD launched to the Z = +26 ~ +30 cm
region that partially stabilized the 2/1 mode drives currenton R = 2.03 ~ 2.06
m along the outboard midplane which is consistent with the mode rational
surface location inferred from ECEI
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The triggered 2/1 mode amplitude is partially stabilized by ECCD
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Plasma internal profiles varied by applied ECCD can affect the
NTM stability
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The varied electron, ion, and plasma
rotation profiles due to the applied off-axis
ECCD may alter the tearing stability

To clearly identify the stabilization effect
from the perturbed bootstrap current
compensation, the NTM stability analysis
for the observed 2/1 modes is underway

R (m)
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Obvious core instabilities observed in the improved confinement
phase lead to triggered 2/1 NTM
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0 The MHD activities in the neighboring discharges produced by using almost identical
discharge setup were quite different which resulted in different NTM stability

0 The low frequency fishbone instability which accompanies a weak n = 2 (presumably
2/2 kink) mode is observed in several discharges to improve B, and stored energy
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Plasma profiles altered by fishbone unstable to 2/1 NTM

T, (keV)

Q

a The plasma profiles redistributed by fishbone are thought to be less stable to
NTM consequently leading to a more frequent 2/1 NTM onset observed in the

(&)
T T
L e~
jA)]
S—
R st CEE =

0 | " |

KSTAR 25777 CES
. T r

—— 12 = 5.75 s (after fishbone)

lon temperature

— 11 = 3.98 s (before fishbone) |

L | "
1.8 1.9 2.0 2.1 2.2
R (m)

(km/s)

-—

Vv

400

300

200

100

KSTAR 25777 CES
: : .

b)

R (m)

f — 12 = 5.75 s (after fishbone)
| — 11 = 3.98 s (before fishbone) ]
Plasma rotation
1.8 1.9 2.0 2.1 2.2

In the period having fishbone, T, T, and V, gradually increase while n, decreases

experiment

KSTAR

Stability of NTMs and their active stabilization in KSTAR - Y.S. Park, et al. (IAEA-FEC 2020)

12



The off-axis ECCD destabilized fishbone and improved the plasma confinement
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O By the off-axis ECCD applied to the discharges having no tearing mode, the
fishbone with the co-existing n = 2 mode is commonly triggered shortly (~0.5 s)
after the ECCD

O Both B, and stored energy are increased by ~10% by comparing the values
before and after the ECCD
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High B, 2 3 is sustained for a long period with the similar fishbone
instabilities existing in high By phase
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O With the existing fishbone, the 2/1 NTM onset is avoided in the discharge
which resulted in high B, values greater than 3 sustained for a long time
period (=5 s) with a nominal B of 1.7 T
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NTM stability and active control analysis in KSTAR

0 NTM stability and active control analysis in different operational regimes

Triggerless 2/1 NTM stability has been altered by varied plasma density
The mode localized ECCD significantly reduced the triggerless NTM amplitude

Triggered 2/1 NTM onset now becomes a big hurdle for achieving high 3 in
KSTAR, and the observed partial stabilization of the mode will be analyzed to
identify the source of the stabilization effect

Effect of fishbone on the plasma internal profiles and the 2/1 NTM destabilization
has been confirmed

O Next Steps

In future NTM experiment, active NTM stabilization using feedback-actuated
ECCD will be attempted

A higher ECCD figure-of-merit for NTM stabilization is planned to be realized by
optimizing the EC launch conditions for equilibria at a lowered B ~1.6 T

NTM stability physics model will be constructed by fitting the equation to the data
from the recent experiments

" KSTAR
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