DIVERTOR DETACHMENT W/ DEUTERIUM GAS INJECTION IN KSTAR H-MODE PLASMAS

ID: 1299

J. H. Hwang^{1,2*}, J.-S. Park³, R. A. Pitts³, H. H. Lee⁴, Y. S. Han^{1,2}, J. G. Bak⁴, J.-W. Juhn⁴, J. Jang⁴, S. H. Hong⁴ and W. Choe^{1,2**}

¹Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea / ²Impurity and Edge plasma Research Center, KAIST, Daejeon, Republic of Korea / ³ITER Organization, St. Paul Lez Durance Cedex, France / ⁴Korea Institute of Fusion Energy, Daejeon, Republic of Korea *Presenter: junghoo.hwang@kaist.ac.kr; **Corresponding author: wchoe@kaist.ac.kr

1. Introduction

- One of the major challenges for the sustainable operation of future fusion devices including ITER and DEMO: "Handling the power flux from the hot core to the divertor targets"
- Viable solution: "Divertor detachment"
 - Defined as the momentum loss along a field line
 - Achieved by fuel gas and/or impurity seeding
- Partial detachment was successfully achieved with pure deuterium injection in KSTAR H-mode plasmas.
- The experimental results were reproduced reasonably well by SOLPS-ITER simulations.

2. Experimental observations of partial detachment in KSTAR H-mode plasmas with deuterium injection • D2 fuelling locations

- #22849 $\mathbf{B} \times \nabla \mathbf{B}$ X-point sweeping Gas p
- P_{heat} = 2.9-3.1 MW, **H-mode discharges**
- $I_p = 0.7 \text{ MA}, B_T = 1.8 \text{ T} (q_{95} \approx 4.0)$
- Forward B_T direction (Ion $Bx \nabla B$ -drift pointing down toward the lower divertor)
- Outer strike point on the central divertor with single null
- X-point sweeping with 1.5 cm/s (according to the speed of 4 cm/s for the outer strike point) was applied to get high spatial resolution in ion saturation current profiles from the tile-embedded Langmuir probes.

• Two different D₂ fuelling locations used

1) **Divertor fuelling:** partial detachment achieved (!) 2) Main chamber fuelling: no partial detachment

• In this work, quantitative code-experiment comparisons are made to understand/ explain the underlying physics and quantitative predictions.

3. Fuelling location dependency on the outer target detachment (no detachment w/ main chamber fuelling, #22852)

- The outer target detachment was not achieved w/ main chamber fuelling (#22852) although the maximum line-averaged density was similar to that of #22849.
 - Outer target peak j_{sat} kept increasing until the end of discharge. -
- Reduction factor of inter-ELM outer target peak heat flux is similar for both divertor fuelling (0.4 \rightarrow 0.15 MW/m²) and main chamber fuelling (1.0 \rightarrow 0.35 MW/m^2).
- However, the peak flux stayed at higher level during the discharge for main

(a) Time evolution of experimental parameters of #22849. The time points used in the j_{sat} profiles are shown as the dashed lines. (b) Inter-ELM j_{sat} profiles at the inner and outer targets measured by the tile-embedded Langmuir probes. (c) Inter-ELM heat flux perpendicular to the outer target measured by the divertor IRTV.

Time windows:

- 1) Attached state (4.1-4.3 s)
- 2) Detachment onset (5.7-5.9 s)
- 3) Partially detached state (7.0-7.2 s)
- By ramping the fuelling rate, the lineaveraged electron density increased up to $6.0 \times 10^{19} m^{-3}$ (f_{GW} = 0.67).

Partial detachment clearly seen at the outer target

The peak j_{sat} was reduced by a factor of 3 when comparing the detachment onset and the partially detached state.

- Line-averaged density requirement for detachment onset: ~ 5.5x10¹⁹ m⁻³
- The outer target heat flux was reduced by a factor of 2.7.

• Radiated power density distribution

High recycling

Partially detached

5. Comparison between simulation and experiment

chamber fuelling than divertor fuelling.

4. Setup of SOLPS-ITER simulations

- SOLPS-ITER code package (version 3.0.7) [2,3] was used. • Main modules:
 - **1) B2.5**: 2.5-D (toroidally symmetric) multi-fluid plasma solver 2) **EIRENE**: kinetic neutral Monte-Carlo tracer
- Drifts and neutral-neutral collisions are not included.
- Two different fuelling locations were used: **Divertor fuelling vs. Main chamber fuelling**

		TAMA	-	Cry	opun	ıp	
as	puff			Cry	opun	VV pı	IW
0		1 - 1	.1	: 11.	1		

	Modelling condition	Setting / Description		
	Species	D + C		
	Heating power	2.4 MW across the core boundary		
	Magnetic equilibrium	Reconstructed from KSTAR #22849, 5.6 s		
р	Density control	Feedback via D ₂ gas puff		
	n _{e,sep}	$1.0 \sim 4.0 \times 10^{19} m^{-3}$		
	Physical / Chemical sputtering	TRIM / $\Upsilon_{chem} = 0.04$		
	Recycling coefficient	1.0 for deuterium		
	Absorption coefficient of the pumps	0.0029 / 0.0206		

Computational grid based on the magnetic equilibrium

Ion saturation current density profiles at (a) the inner target and (b) the outer target. *Experimental data: circle, simulation: solid lines*

- The reduction factor of the outer target j_{sat} is qualitatively matched between the experiment and the simulation (3.1 vs. 2.1) when comparing the high recycling and the partially detached regime.
- However, the experimental outer target j_{sat} stayed lower level by a factor of 1.4 than the simulation result.

1) High recycling (blue):

simulation.

2) Partially detached (black):

3.6 discrepancy is shown.

5.7 s for experiment, $n_{e,sep} = 2.0 \times 10^{19} m^{-3}$ for simulation

6.7 s for experiment, $n_{e,sep} = 4.0 \times 10^{19} m^{-3}$ for simulation

For the partially detached regime, there is a good

However, for the high recycling regime, a factor of

agreement between the experiment and the

• Target profiles of heat flux

Profile of heat flux density perpendicular to the outer target

• Fuelling location dependence in the simulation

 $n_{e,sep} = 4.0 \times 10^{19} m^{-3}$ for simulation

Radiated power density distribution from the experiment (top) and the modelling (bottom) for two divertor regimes

- For both experiment and simulation, the outer target radiation was reduced and the maximum radiation front at the inner divertor region moved upward toward the X-point.
- Only for the simulation, the maximum radiation was observed in front of the outer target and the intense radiation at the outer SOL was shown.
 - It may be due to the lack of #LoSs and the limited B2.5 grid extent [4].

Experimental radiation distribution by imaging bolometer [5]

• The main chamber fuelling case shows later outer target detachment onset at the higher separatrix density ($n_{e,sep}^{onset} = 2.5 \times$ $10^{19}m^{-3}$) than the divertor fuelling case

(a) Profiles of the perpendicular transport coefficients used in the simulations (D: particle diffusivity, $\chi_{i,e}$: heat diffusivity

of ions and electrons). (b) Upstream n_{e} , T_{e} profiles from the experiment and the SOLPS-ITER simulation.

(a) Peak ion saturation current density (j_{sat}) and (b) peak heat flux density (q_{div}) at both targets during the separatrix density $(n_{e,sep})$ scan.

0.3 0.2 Simulated neutral pressure distributions in the divertor region for (a) the divertor fuelling case

and (b) the main chamber fuelling case.

Partially detached

 $(n_{e,sep}^{onset} = 2.0 imes 10^{19} m^{-3}).$

Larger peak heat flux for the main chamber fuelling case is also reproduced.

The divertor fuelling case has higher neutral pressure in the outer divertor region by the geometrical effect: the Vshaped divertor geometry and the plenum near the outer divertor.

Conclusions

- Partial detachment was successfully achieved with pure deuterium injection in KSTAR H-mode discharges.
- The experimental results are reproduced reasonably well by SOLPS-ITER simulations.
- There are still discrepancies between the simulation and the experiment:
 - Higher heat flux density at the outer target for the high recycling regime and the intense radiation at the outer SOL are only shown in the simulation.
- By examining the effects of two different fueling locations (divertor fuelling vs. main chamber fuelling), the divertor fuelling is favorable to get earlier detachment of the outer target.

Future work

Simulations including drifts and neutral-neutral collisions are planned.

Acknowledgements:

This work was supported by the National R&D program through the National Research foundation of Korea (NRF), funded by the Ministry of Science, ICT (NRF-2019M1A7A1A03087560). The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

References:

[1] Kallenbach, A. et al., Nucl. Fusion 55 (2015) 053026 [2] Wiesen, S. et al., J. Nucl. Mater. 463 (2015) 480 [3] Bonnin, X. et al., Plasma Fusion Res. 11 (2016) 1403102 [4] Wiesen, S. et al., Nucl. Mater. Energy 17 (2018) 174 [5] Jang, J. et al., Curr. App. Phys. 18 (2018) 461